4,234 research outputs found
Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)
Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single
crystals have been studied upon continuous doping of CoO_2 planes with either
electrons or holes. The thermoelectric response and the resistivity behavior
reveal a hopping character of the transport in both compounds, providing the
basis for understanding the recently found remarkable divergence of the Seebeck
coefficient at x=0.5. The doping dependence of the thermoelectric power evinces
that the configurational entropy of charge carriers, enhanced by their spin and
orbital degeneracy, plays a key role in the origin of the large thermoelectric
response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR
Wind and boundary layers in Rayleigh-Benard convection. I: analysis and modeling
The aim of this paper is to contribute to the understanding and to model the
processes controlling the amplitude of the wind of Rayleigh-Benard convection.
We analyze results from direct simulation of an L/H = 4 aspect-ratio domain
with periodic sidewalls at Ra = 1e5; 1e6; 1e7; 1e8 and at Pr = 1 by decomposing
independent realizations into wind and fluctuations. It is shown that deep
inside the thermal boundary layer, horizontal heat-fuxes exceed the average
vertical heat-fux by a factor 3 due to the interaction between the wind and the
mean temperature field. These large horizontal heat-fluxes are responsible for
spatial temperature differences that drive the wind by creating pressure
gradients. The wall fluxes and turbulent mixing in the bulk provide damping.
Using the DNS results to parameterise the unclosed terms, a simple model
capturing the essential processes governing the wind structure is derived. The
model consists of two coupled differential equations for wind velocity and
temperature amplitude. The equations indicate that the formation of a wind
structure is inevitable due to the positive feedback resulting from the
interaction between the wind and temperature field. Furthermore, the wind
velocity is largely determined by the turbulence in the bulk rather than by the
wall-shear stress. The model reproduces the Ra dependence of wind Reynolds
number and temperature amplitude
Low Temperature Magnetic Properties of the Double Exchange Model
We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong
coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener
to explain ferromagnetism has unexpected properties when there is more than one
itinerant electron. We find that, in general, the many-body ground state of the
DE model is {\it not} globally FM ordered (except for special filled-shell
cases). Also, the low energy excitations of this model are distinct from spin
wave excitations in usual Heisenberg ferromagnets, which will result in unusual
dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include
Planting a misdiagnosis of Alzheimer's disease in a person's mind
Objective: There is an extensive corpus of knowledge about how misinformation may distort autobiographical memories. A diagnostic error can be conceptualised as a form of misinformation. Methods: The authors discuss the case of a 58-year-old woman who was given a misdiagnosis of Alzheimer's disease. Results: The patient was deeply convinced that the diagnosis was correct, even when she was confronted with contradictory evidence. Conclusion: A diagnosis is not a neutral piece of information. It profoundly affects the lives of patients. The consequences of a misdiagnosis may be similar to persistent false memories
Real-time centre detection of an OLED structure
The research presented in this paper focuses on real-time image processing for visual servoing, i.e. the positioning of a x-y table by using a camera only instead of encoders. A camera image stream plus real-time image processing determines the position in the next iteration of the table controller. With a frame rate of 1000 fps, a maximum processing time of only 1 millisecond is allowed for each image of 80x80 pixels. This visual servoing task is performed on an OLED (Organic Light Emitting Diode) substrate that can be found in displays, with a typical size of 100 by 200 µm. The presented algorithm detects the center of an OLED well with sub-pixel accuracy (1 pixel equals 4 µm, sub-pixel accuracy reliable up to ±1 µm) and a computation time less than 1 millisecond
- …