11 research outputs found

    Following Darwin's footsteps using 'the most wonderful plants in the world': the ecophysiological responses of the carnivorous plant Drosera rotundifolia to nitrogen availability.

    Get PDF
    Nitrogen (N) is an essential element to plants for growth, maintenance and reproduction, however most N does not exist in a form that is biologically available to plants. In order to maximise the acquisition and retention of N, plants have evolved a variety of morphological and physiological adaptations and life history strategies, as well as the ability to respond plastically to changes in resource availability in ecological time. Determining the ecophysiological responses of plants to changes in root N availability is crucial to further understanding of the mechanisms underlying competitive interactions between plants, and between plants and other organisms, that ultimately contribute to community structure and ecosystem functioning. Carnivorous plants are ideal systems for investigating ecophysiological responses to N availability as:- (i) they share a unique adaptation for obtaining supplemental N from captured prey, therefore ecological stoichiometry and energetic cost/benefit models may be explored; (ii) the trait of botanical carnivory is widely considered to have independently co-evolved as a response to N-deficient, sunny and wet environments, therefore resource allocation trade-offs between plant investment in N and carbon (C) acquisition may be observed, and (iii) they are extremely sensitive to changes in root N availability in ecological time. In this research, the carnivorous plant Drosera rotundifolia (round-leaved sundew) was used to address several unanswered ecophysiological and evolutionary questions relating to patterns and processes of prey capture and the N nutrition of carnivorous plants. Furthermore, the potential for reducing uncertainty in the calculation of plant reliance on carnivory using a δ15N natural abundance multi-level linear mixing model was explored. A combined approach of in-situ and ex-situ studies was employed, using co-occurring non-carnivorous plants or carnivorous plant species with differing evolutionary lineages or prey capture mechanisms respectively to provide context. Results show that the adaptations of carnivory, high reproductive investment and a relatively short life span enable Drosera rotundifolia to survive and thrive in an extreme, N deficient environment. Phenotypically plastic responses by the plant to light and root N availability provide evidence of resource allocation trade-offs between investment in carnivory for N acquisition and in photosynthesis for C acquisition. Plants invested less heavily in prey capture (measured as the stickiness of leaf mucilage) as N availability increased or light availability decreased. These results show that the energetic costs associated with carnivory are avoided by the plant when less costly sources of N are available for uptake and that the production of carbon-rich mucilage is only made under nutrient-limited and well-lit conditions. Results obtained from the comparison of captured insect prey with background invertebrates of potential prey indicate that Drosera rotundifolia is a dietary generalist, where the quantity of prey captured per plant is positively correlated with leaf stickiness and total leaf area. Plant reliance on prey-derived N decreased with increasing root N availability, providing evidence that carnivory is only of net benefit to the plant in N-deficient and well-lit environments, as the photosynthetic costs of investment in the trait are not exceeded by the energetic gain from prey N uptake in shady or dry habitats. A more accurate and precise method for calculating plant reliance on botanical carnivory is presented which incorporates the insect diet of the plant. This method has wider significance for reducing uncertainty in the calculation of relative source contributions to a mixture for most natural abundance applications using a multi-level linear mixing model. To conclude, results from this research further understanding of the ecophysiological mechanisms underlying plant responses to changes in resource availability and the selective pressures driving the evolution of plant adaptations. These results therefore assist with predicting how plants and plant communities may respond to sustained N deposition inputs and future environmental scenarios

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    The Law and Economics of Liability Insurance: A Theoretical and Empirical Review

    Full text link

    Quality improvement, implementation, and dissemination strategies to improve mental health care for children and adolescents: a systematic review

    Get PDF
    Abstract Background Some outcomes for children with mental health problems remain suboptimal because of poor access to care and the failure of systems and providers to adopt established quality improvement strategies and interventions with proven effectiveness. This review had three goals: (1) assess the effectiveness of quality improvement, implementation, and dissemination strategies intended to improve the mental health care of children and adolescents; (2) examine harms associated with these strategies; and (3) determine whether effectiveness or harms differ for subgroups based on system, organizational, practitioner, or patient characteristics. Methods Sources included MEDLINE®, the Cochrane Library, PsycINFO, and CINAHL, from database inception through February 17, 2017. Additional sources included gray literature, additional studies from reference lists, and technical experts. Two reviewers selected relevant randomized controlled trials (RCTs) and observational studies, extracted data, and assessed risk of bias. Dual analysis, synthesis, and grading of the strength of evidence for each outcome followed for studies meeting inclusion criteria. We also used qualitative comparative analysis to examine relationships between combinations of strategy components and improvements in outcomes. Results We identified 18 strategies described in 19 studies. Eleven strategies significantly improved at least one measure of intermediate outcomes, final health outcomes, or resource use. Moderate strength of evidence (from one RCT) supported using provider financial incentives such as pay for performance to improve the competence with which practitioners can implement evidence-based practices (EBPs). We found inconsistent evidence involving strategies with educational meetings, materials, and outreach; programs appeared to be successful in combination with reminders or providing practitioners with newly collected clinical information. We also found low strength of evidence for no benefit for initiatives that included only educational materials or meetings (or both), or only educational materials and outreach components. Evidence was insufficient to draw conclusions on harms and moderators of interventions. Conclusions Several strategies can improve both intermediate and final health outcomes and resource use. This complex and heterogeneous body of evidence does not permit us to have a high degree of confidence about the efficacy of any one strategy because we generally found only a single study testing each strategy. Trial registration PROSPERO, CRD42015024759
    corecore