3 research outputs found

    Deep Learning-Based Algal Detection Model Development Considering Field Application

    No full text
    Algal blooms have various effects on drinking water supply systems; thus, proper monitoring is essential. Traditional visual identification using a microscope is a time-consuming method and requires extensive labor. Recently, advanced machine learning algorithms have been increasingly applied for the development of object detection models. The You-Only-Look-Once (YOLO) model is a novel machine learning algorithm used for object detection; it has been continuously improved in newer versions, and a tiny version of each standard model presented. The tiny versions applied a less complicated architecture using a smaller number of convolutional layers to enable faster object detection than the standard version. This study compared the applicability of the YOLO models for algal image detection from a practical aspect in terms of classification accuracy and inference time. Therefore, automated algal cell detection models were developed using YOLO v3 and YOLO v4, in which a tiny version of each model was also applied. The cell images of 30 algal genera were used for training and testing the models. The model performances were compared using the mean average precision (mAP). The mAP values of the four models were 40.9, 88.8, 84.4, and 89.8 for YOLO v3, YOLO v3-tiny, YOLO v4, and YOLO v4-tiny, respectively, demonstrating that YOLO v4 is more precise than YOLO v3. The tiny version models presented noticeably higher model accuracy than the standard models, allowing up to ten times faster object detection time. These results demonstrate the practical advantage of tiny version models for the application of object detection with a limited number of object classes

    Investigating Machine Learning Applications for Effective Real-Time Water Quality Parameter Monitoring in Full-Scale Wastewater Treatment Plants

    No full text
    Environmental sensors are utilized to collect real-time data that can be viewed and interpreted using a visual format supported by a server. Machine learning (ML) methods, on the other hand, are excellent in statistically evaluating complicated nonlinear systems to assist in modeling and prediction. Moreover, it is important to implement precise online monitoring of complex nonlinear wastewater treatment plants to increase stability. Thus, in this study, a novel modeling approach based on ML methods is suggested that can predict the effluent concentration of total nitrogen (TNeff) a few hours ahead. The method consists of different ML algorithms in the training stage, and the best selected models are concatenated in the prediction stage. Recursive feature elimination is utilized to reduce overfitting and the curse of dimensionality by finding and eliminating irrelevant features and identifying the optimal subset of features. Performance indicators suggested that the multi-attention-based recurrent neural network and partial least squares had the highest accurate prediction performance, representing a 41% improvement over other ML methods. Then, the proposed method was assessed to predict the effluent concentration with multistep prediction horizons. It predicted 1-h ahead TNeff with a 98.1% accuracy rate, whereas 3-h ahead effluent TN was predicted with a 96.3% accuracy rate
    corecore