3 research outputs found

    Coherence of a field-gradient-driven singlet-triplet qubit coupled to many-electron spin states in 28Si/SiGe

    Full text link
    Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually. While synthetic spin-orbit coupling using a micromagnet is widely used for driving qubits based on single spins in silicon, corresponding demonstration for encoded spin qubits is so far limited to natural silicon. Here, we demonstrate fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double quantum dot in 28^{28}Si/SiGe with an on-chip micromagnet with which we show the oscillation quality factor of an encoded spin qubit exceeding 580. The coherence time T2\textit{T}_{2}* is analyzed as a function of potential detuning and an external magnetic field. In weak magnetic fields, the coherence is limited by fast noise compared to the data acquisition time, which limits T2\textit{T}_{2}* < 1 μ{\mu}s in the ergodic limit. We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration

    Probing two-qubit capacitive interactions beyond bilinear regime using dual Hamiltonian parameter estimations

    Full text link
    Abstract We report the simultaneous operation and two-qubit-coupling measurement of a pair of two-electron spin qubits, actively decoupled from quasi-static nuclear noise in a GaAs quadruple quantum dot array. Coherent Rabi oscillations of both qubits (decay time ≈2 μs; frequency few MHz) are achieved by continuously tuning their drive frequency using rapidly converging real-time Hamiltonian estimators. We observe strong two-qubit capacitive interaction (>190 MHz), combined with detuning pulses, inducing a state-conditional frequency shift. The two-qubit capacitive interaction is beyond the bilinear regime, consistent with recent theoretical predictions. We observe a high ratio (>16) between coherence and conditional phase-flip time, which supports the possibility of generating high-fidelity and fast quantum entanglement between encoded spin qubits using a simple capacitive interaction

    Approaching ideal visibility in singlet-triplet qubit operations using energy-selective tunneling-based Hamiltonian estimation

    Full text link
    We report energy selective tunneling readout-based Hamiltonian parameter estimation of a two-electron spin qubit in a GaAs quantum dot array. Optimization of readout fidelity enables a single-shot measurement time of 16 on average, with adaptive initialization and efficient qubit frequency estimation based on real-time Bayesian inference. For qubit operation in a frequency heralded mode, we observe a 40-fold increase in coherence time without resorting to dynamic nuclear polarization. We also demonstrate active frequency feedback with quantum oscillation visibility, single-shot measurement fidelity, and state initialization fidelity up to 97.7%, 99%, and over 99.7%, respectively. By pushing the sensitivity of the energy selective tunneling-based spin to charge conversion to the limit, the technique is useful for advanced quantum control protocols such as error mitigation schemes, where fast qubit parameter calibration with a large signal-to-noise ratio is crucial.Comment: 24 pages, 7 figures, 1 tabl
    corecore