38 research outputs found

    Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones

    Get PDF
    We demonstrate ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of an orthogonal silver nanowire array embedded in a polymer matrix. Hybrid NMs significantly enhance the electrical and mechanical properties of ultrathin polymer NMs, which can be intimately attached to human skin. As a proof of concept, we present a skin-attachable NM loudspeaker, which exhibits a significant enhancement in thermoacoustic capabilities without any significant heat loss from the substrate. We also present a wearable transparent NM microphone combined with a micropyramid-patterned polydimethylsiloxane film, which provides excellent acoustic sensing capabilities based on a triboelectric voltage signal. Furthermore, the NM microphone can be used to provide a user interface for a personal voice-based security system in that it can accurately recognize a user???s voice. This study addressed the NM-based conformal electronics required for acoustic device platforms, which could be further expanded for application to conformal wearable sensors and health care devices

    Differential Proteome Profiling Using iTRAQ in Microalbuminuric and Normoalbuminuric Type 2 Diabetic Patients

    Get PDF
    Diabetic nephropathy (DN) is a long-term complication of diabetes mellitus that leads to end-stage renal disease. Microalbuminuria is used for the early detection of diabetic renal damage, but such levels do not reflect the state of incipient DN precisely in type 2 diabetic patients because microalbuminuria develops in other diseases, necessitating more accurate biomarkers that detect incipient DN. Isobaric tags for relative and absolute quantification (iTRAQ) were used to identify urinary proteins that were differentially excreted in normoalbuminuric and microalbuminuric patients with type 2 diabetes where 710 and 196 proteins were identified and quantified, respectively. Some candidates were confirmed by 2-DE analysis, or validated by Western blot and multiple reaction monitoring (MRM). Specifically, some differentially expressed proteins were verified by MRM in urine from normoalbuminuric and microalbuminuric patients with type 2 diabetes, wherein alpha-1-antitrypsin, alpha-1-acid glycoprotein 1, and prostate stem cell antigen had excellent AUC values (0.849, 0.873, and 0.825, resp.). Moreover, we performed a multiplex assay using these biomarker candidates, resulting in a merged AUC value of 0.921. Although the differentially expressed proteins in this iTRAQ study require further validation in larger and categorized sample groups, they constitute baseline data on preliminary biomarker candidates that can be used to discover novel biomarkers for incipient DN

    Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab

    Get PDF
    Background: Inhibition of the activated epidermal growth factor receptor (EGFR) with either enzymatic kinase inhibitors or anti-EGFR antibodies such as cetuximab, is an effective modality of treatment for multiple human cancers. Enzymatic EGFR inhibitors are effective for lung adenocarcinomas with somatic kinase domain EGFR mutations while, paradoxically, anti-EGFR antibodies are more effective in colon and head and neck cancers where EGFR mutations occur less frequently. In colorectal cancer, anti-EGFR antibodies are routinely used as second-line therapy of KRAS wild-type tumors. However, detailed mechanisms and genomic predictors for pharmacological response to these antibodies in colon cancer remain unclear. Findings: We describe a case of colorectal adenocarcinoma, which was found to harbor a kinase domain mutation, G724S, in EGFR through whole genome sequencing. We show that G724S mutant EGFR is oncogenic and that it differs from classic lung cancer derived EGFR mutants in that it is cetuximab responsive in vitro, yet relatively insensitive to small molecule kinase inhibitors. Through biochemical and cellular pharmacologic studies, we have determined that cells harboring the colon cancer-derived G719S and G724S mutants are responsive to cetuximab therapy in vitro and found that the requirement for asymmetric dimerization of these mutant EGFR to promote cellular transformation may explain their greater inhibition by cetuximab than small-molecule kinase inhibitors. Conclusion: The colon-cancer derived G719S and G724S mutants are oncogenic and sensitive in vitro to cetuximab. These data suggest that patients with these mutations may benefit from the use of anti-EGFR antibodies as part of the first-line therapy

    Full-Field Subwavelength Imaging Using a Scattering Superlens

    Get PDF
    Light-matter interaction gives optical microscopes tremendous versatility compared with other imaging methods such as electron microscopes, scanning probe microscopes, or x-ray scattering where there are various limitations on sample preparation and where the methods are inapplicable to bioimaging with live cells. However, this comes at the expense of a limited resolution due to the diffraction limit. Here, we demonstrate a novel method utilizing elastic scattering from disordered nanoparticles to achieve subdiffraction limited imaging. The measured far-field speckle fields can be used to reconstruct the subwavelength details of the target by time reversal, which allows full-field dynamic super-resolution imaging. The fabrication of the scattering superlens is extremely simple and the method has no restrictions on the wavelength of light that is usedclos

    The Role of Sense of Presence and Irritation in the Context of Mobile Social Network Sites

    No full text
    While mobile social network sites (SNSs) function as a platform for social and self-communication that leads to sense of others and oneself, users may feel irritation derived from social interaction and technical frustration in using mobile SNSs. Because of the ubiquitous nature of mobile devices, sense of presence and irritation are more influential to users' satisfaction of mobile SNSs. This study investigates the influence of a sense of presence and irritation on users' satisfaction with mobile SNSs. Additionally, the study examines a moderating effect of mobile SNS use intensity between sense of presence (social and self-presence) and irritation (social and technological irritation) and their outcomes. The study contributes to knowledge on social media users, particularly in the mobile context, by proposing and demonstrating a presence-irritation mode

    Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection

    No full text
    Innovative concrete structure maintenance now requires automated computer vision inspection. Modern edge computing devices (ECDs), such as smartphones, can serve as sensing and computational platforms and can be integrated with deep learning models to detect on-site damage. Due to the fact that ECDs have limited processing power, model sizes should be reduced to improve efficiency. This study compared and analyzed the performance of five semantic segmentation models that can be used for damage detection. These models are categorized as lightweight (ENet, CGNet, ESNet) and heavyweight (DDRNet-Slim23, DeepLabV3+ (ResNet-50)), based on the number of model parameters. All five models were trained and tested on the concrete structure dataset considering four types of damage: cracks, efflorescence, rebar exposure, and spalling. Overall, based on the performance evaluation and computational cost, CGNet outperformed the other models and was considered effective for the on-site damage detection application of ECDs

    A SIMPLE METHOD TO CALCULATE THE DISPLACEMENT DAMAGE CROSS SECTION OF SILICON CARBIDE

    Get PDF
    We developed a simple method to prepare the displacement damage cross section of SiC using NJOY and SRIM/TRIM. The number of displacements per atom (DPA) dependent on primary knock-on atom (PKA) energy was computed using SRIM/TRIM and it is directly used by NJOY/HEATR to compute the neutron energy dependent DPA cross sections which are required to estimate the accumulated DPA of nuclear material. SiC DPA cross section is published as a table in DeCART 47 energy group structure. Proposed methodology can be easily extended to other materials

    An Android Security Extension to Protect Personal Information against Illegal Accesses and Privilege Escalation Attacks

    No full text
    Abstract Recently, it is widespread for malware to collect sensitive information owned by third-party applications as well as to escalate its privilege to the system level (the highest level) on the Android platform. An attack of obtaining root-level privilege in an Android environment can form a serious threat to users from the viewpoint of breaking down the whole security system. This paper proposes a new scheme that effectively prevents privilege escalation attacks and protects users' personal information in Android. Our proposed scheme can detect and respond to malware that illegally acquires rootlevel privilege using pWhitelist, a list of trusted programs with root-level permission. Moreover, the scheme does not permit even a privileged program to access users' personal information based on the principle of least privilege. As a result, it protects personal information against illegal accesses by malicious applications even though they illegally obtain root-level permissions by exploiting vulnerabilities of trusted programs

    Mimicking Human and Biological Skins for Multifunctional Skin Electronics

    No full text
    Electronic skin (e-skin) technology is an exciting frontier to drive the next generation of wearable electronics owing to its high level of wearability, enabling high accuracy to harvest information of users and their surroundings. Recently, biomimicry of human and biological skins has become a great inspiration for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions. This review covers and highlights bioinspired e-skins mimicking perceptive features of human and biological skins. In particular, five main components in tactile sensation processes of human skin are individually discussed with recent advances of e-skins that mimic the unique sensing mechanisms of human skin. In addition, diverse functionalities in user-interactive, skin-attachable, and ultrasensitive e-skins are introduced with the inspiration from unique architectures and functionalities, such as visual expression of stimuli, reversible adhesion, easy deformability, and camouflage, in biological skins of natural creatures. Furthermore, emerging wearable sensor systems using bioinspired e-skins for body motion tracking, healthcare monitoring, and prosthesis are described. Finally, several challenges that should be considered for the realization of next-generation skin electronics are discussed with recent outcomes for addressing these challenges
    corecore