25 research outputs found

    Spontaneous Symmetry Breaking in Two Coupled Nanomechanical Electron Shuttles

    Full text link
    We present spontaneous symmetry breaking in a nanoscale version of a setup prolific in classical mechanics: two coupled nanomechanical pendulums. The two pendulums are electron shuttles fabricated as nanopillars and placed between two capacitor plates in a homogeneous electric field. Instead of being mechanically coupled through a spring they exchange electrons, i.e. they shuttle electrons from the source to the drain 'capacitor plate'. Nonzero DC current through this system by external AC excitation is caused via dynamical symmetry breaking. This symmetry-broken current appears at sub- and superharmonics of the fundamental mode of the coupled system

    Ultrathin, polarization-independent, and focus-tunable liquid crystal diffractive lens for augmented reality

    Full text link
    Despite the recent advances in augmented reality (AR), which has shown the potential to significantly impact on our daily lives by offering a new way to manipulate and interact with virtual information, minimizing visual discomfort due to the vergence-accommodation conflict remains a challenge. Emerging AR technologies often exploit focus-tunable optics to address this problem. Although they demonstrated improved depth perception by enabling proper focus cues, a bulky form factor of focus-tunable optics prevents their use in the form of a pair of eyeglasses. Herein, we describe an ultrathin, focus-tunable liquid crystal (LC) diffractive lens with a large aperture, a low weight, and a low operating voltage. In addition, we show that the polarization dependence of the lens, which is an inherent optical property of LC lenses, can be eliminated using birefringent thin films as substrates and by aligning the optical axes of the birefringent substrates and LC at a specific angle. The polarization independence eliminates the need for a polarizer, thus further reducing the form factor of the optical system. Next, we demonstrate a prototype of AR glasses with addressable focal planes using the ultrathin lens. The prototype AR glasses can adjust the accommodation distance of the virtual image, mitigating the vergence-accommodation conflict without substantially compromising the form factor or image quality. This research on ultrathin lens technology shows promising potential for developing compact optical displays in various applications.Comment: 23 pages, 9 figure

    Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    No full text
    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis

    A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Large Proteins

    Get PDF
    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors

    Aqueous Synthesis of the Tiopronin-Capped Gold Nanoclusters/Nanoparticles with Precise Size Control via Deprotonation of the Ligand

    No full text
    Gold nanoparticles have led to numerous advances in nanomaterial-based sensors and biomedical technologies owing to their chemical inertness and outstanding physiochemical and optical properties. Gold nanoparticles are still considered one of the most promising types of nanomaterials in various biomedical fields, including drug delivery, cancer therapy, biomolecule detection, and high-accuracy diagnosis. Surface functionalization of gold nanoparticles with various ligands modifies the physicochemical properties of the surface, thereby improving the biocompatibility and uptake efficiency of a living system. Tiopronin, one of the most commonly used ligands for gold nanoparticles, has both thiol and carboxyl functional groups that can be easily attached to various biomolecules. However, the conventional method of synthesizing tiopronin-capped gold nanoclusters using methanol and acetic acid as a solvent requires a laborious and time-consuming dialysis process to remove methanol and acetic acid. In this study, we demonstrate a novel and simple aqueous synthesis method to obtain tiopronin-capped gold nanoclusters/nanoparticles with precise size control in the sub-nanometer to nanometer range. The main advantage of our synthesis method is that it does not require a dialysis process because it uses water as a solvent. The boron byproduct produced during the synthesis can be removed with a simple volatilization process. Moreover, we characterized the physical morphologies, photoelectronic properties, hydrodynamic size, and crystal structure of the tiopronin-capped gold nanoclusters/nanoparticles using transmission electron microscopy, spectrophotometry, fluorescence spectrometry, dynamic light scattering, zeta potential, and X-ray diffraction

    Proposed risk factors for infection with multidrug-resistant pathogens in hemodialysis patients hospitalized with pneumonia

    No full text
    Abstract Background In patients with hemodialysis-associated pneumonia (HDAP), information on both microbiologic features and antimicrobial strategies is limited. The aim of this study is to investigate predictive factors of infection with multidrug-resistant (MDR) pathogens in HDAP patients. Methods This was a multicenter, retrospective, and observational study. Enrolled patients were classified into MDR or non-MDR pathogens groups according to culture results. We examined risk factors of infection with MDR pathogens and created a decision support tool using these risk factors. Results MDR pathogens were identified in 24 (22.8%) out of a total of 105 HDAP patients. The most common MDR pathogens were methicillin-resistant Staphylococcus aureus (10 patients, 9.5%) and the isolation rate of Pseudomonas aeruginosa was 6.6%. Logistic regression showed two variables were associated with the isolation of MDR pathogens: recent hospitalization (adjusted odds ratio [OR]: 2.951, 95% confidence interval [CI]: 1.022–8.518) and PSI (Pneumonia Severity Index) score (adjusted OR: 1.023, 95% CI: 1.005–1.041). The optimal cut-off value for PSI score using a receiver operating characteristic curve analysis was 147. According to the presence of 0, 1, or 2 of the identified risk factors, the prevalence of MDR pathogens was 7.6, 28.2 and 64.2%, respectively (p  147 are risk factors of infection with MDR pathogens in HDAP patients. This simple proposed tool would facilitate more accurate identification of MDR pathogens in these patients

    Confocal nonlinear optical imaging on hexagonal boron nitride nanosheets

    No full text
    Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures. Here, we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride (hBN) nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scattering (cFE-CARS) microscopic system. By incorporating a pinhole with a diameter of approximately 30μm, we effectively minimized the intensity of side lobes induced by circular partial pi-phase shift in the wavefront (diameter, d0) of the probe beam, as well as nonresonant background CARS intensities. Using axial-resolution-improved cFE-CARS (acFE-CARS), the achieved axial resolution is 350nm, exhibiting a 4.3-folded increase in the signal-to-noise ratio compared to the previous case with 0.58 d0 phase mask. This improvement can be accomplished by using a phase mask of 0.24 d0. Additionally, we employed nondegenerate phase matching with three temporally separable incident beams, which facilitated cross-sectional visualization of highly-sample-specific and vibration-sensitive signals in a pump-probe fashion with subpicosecond time resolution. Our observations reveal time-dependent CARS dephasing in hBN nanosheets, induced by Raman-free induction decay (0.66ps) in the 1373cm−1 mode. © 2023, Chinese Society for Optical Engineering.TRU
    corecore