336 research outputs found

    Fast Gradient Methods for Uniformly Convex and Weakly Smooth Problems

    Full text link
    In this paper, acceleration of gradient methods for convex optimization problems with weak levels of convexity and smoothness is considered. Starting from the universal fast gradient method which was designed to be an optimal method for weakly smooth problems whose gradients are H\"older continuous, its momentum is modified appropriately so that it can also accommodate uniformly convex and weakly smooth problems. Differently from the existing works, fast gradient methods proposed in this paper do not use the restarting technique but use momentums that are suitably designed to reflect both the uniform convexity and the weak smoothness information of the target energy function. Both theoretical and numerical results that support the superiority of proposed methods are presented.Comment: 28 pages, 8 figure

    An Optimized Dynamic Mode Decomposition Model Robust to Multiplicative Noise

    Full text link
    Dynamic mode decomposition (DMD) is an efficient tool for decomposing spatio-temporal data into a set of low-dimensional modes, yielding the oscillation frequencies and the growth rates of physically significant modes. In this paper, we propose a novel DMD model that can be used for dynamical systems affected by multiplicative noise. We first derive a maximum a posteriori (MAP) estimator for the data-based model decomposition of a linear dynamical system corrupted by certain multiplicative noise. Applying penalty relaxation to the MAP estimator, we obtain the proposed DMD model whose epigraphical limits are the MAP estimator and the conventional optimized DMD model. We also propose an efficient alternating gradient descent method for solving the proposed DMD model, and analyze its convergence behavior. The proposed model is demonstrated on both the synthetic data and the numerically generated one-dimensional combustor data, and is shown to have superior reconstruction properties compared to state-of-the-art DMD models. Considering that multiplicative noise is ubiquitous in numerous dynamical systems, the proposed DMD model opens up new possibilities for accurate data-based modal decomposition.Comment: 35 pages, 10 figure

    On the linear convergence of additive Schwarz methods for the pp-Laplacian

    Full text link
    We consider additive Schwarz methods for boundary value problems involving the pp-Laplacian. While the existing theoretical estimates for the convergence rate of additive Schwarz methods for the pp-Laplacian are sublinear, the actual convergence rate observed by numerical experiments is linear. In this paper, we bridge the gap between these theoretical and numerical results by analyzing the linear convergence rate of additive Schwarz methods for the pp-Laplacian. In order to estimate the linear convergence rate of the methods, we present two essential components. Firstly, we present a new abstract convergence theory of additive Schwarz methods written in terms of a quasi-norm. This quasi-norm exhibits behavior similar to the Bregman distance of the convex energy functional associated to the problem. Secondly, we provide a quasi-norm version of the Poincar'{e}--Friedrichs inequality, which is essential for deriving a quasi-norm stable decomposition for a two-level domain decomposition setting.Comment: 23 pages, 2 figure
    • …
    corecore