4 research outputs found

    Spectrophotometric, chemometric and chromatographic determination of naphazoline hydrochloride and chlorpheniramine maleate in the presence of naphazoline hydrochloride alkaline degradation product

    Get PDF
    AbstractFour accurate and sensitive methods were developed and validated for determination of naphazoline hydrochloride (NAP) and chlorpheniramine maleate (CLO) in the presence of naphazoline hydrochloride alkaline degradation product (NAP Deg). The first method is a spectrophotometric one , where NAP was determined by the fourth derivative (D4) spectrophotometric method by measuring the peak amplitude at 302nm, while CLO was determined by the second derivative of the ratio spectra (DD2) spectrophotometric method at 276.4nm. The second method is a chemometric-assisted spectrophotometric method in which partial least squares (PLS-1) and partial component regression (PCR) were used for the determination of NAP, CLO and NAP Deg using the information contained in their absorption spectra of ternary mixture. The third method is a TLC-densitometric one where NAP, CLO and NAP Deg were separated using HPTLC silica gel F254 plates using ethyl acetate:methanol:ammonia: (8:2:0.5, by volume) as the developing system followed by densitometric measurement at 245nm. The fourth method is HPLC method where NAP, CLO and NAP Deg were separated using ODS C18 column and a mobile phase consisting of 0.1M KH2PO4 (pH=7):methanol (55:45 v/v) delivered at 1.5mLmin−1 followed by UV detection at 265nm. The proposed methods have been successfully applied to the analysis of NAP and CLO in pharmaceutical formulations without interference from the dosage form additives and the results were statistically compared with a reported method

    Auditory stimuli as a trigger for arrhythmic events differentiate HERG- related (LQTS2) patients from KVLQT1-related patients (LQTS1)

    Get PDF
    AbstractObjectiveThis study was performed to identify a possible relationship between genotype and phenotype in the congenital familial long QT syndrome (cLQTS).BackgroundThe cLQTS, which occurs as an autosomal dominant or recessive trait, is characterized by QT-interval prolongation on the electrocardiogram and torsade de pointes arrhythmias, which may give rise to recurrent syncope or sudden cardiac death. Precipitators for cardiac events are exercise or emotion and occasionally acoustic stimuli.MethodsThe trigger for cardiac events (syncope, documented cardiac arrhythmias, sudden cardiac death) was analyzed in 11 families with a familial LQTS and a determined genotype.ResultsThe families were subdivided in KVLQT1-related families (LQTS1, n = 5) and HERG (human ether-a-gogo-related gene)-related families (LQTS2, n = 6) based on single-strand conformation polymorphism analysis and sequencing. Whereas exercise-related cardiac events dominate the clinical picture of LQTS1patients, auditory stimuli as a trigger for arrhythmic events were only seen in LQTS2patients.ConclusionsArrhythmic events triggered by auditory stimuli may differentiate LQTS2from LQTS1patients
    corecore