63 research outputs found

    Copy number variations (CNVs) identified in Korean individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) are deletions, insertions, duplications, and more complex variations ranging from 1 kb to sub-microscopic sizes. Recent advances in array technologies have enabled researchers to identify a number of CNVs from normal individuals. However, the identification of new CNVs has not yet reached saturation, and more CNVs from diverse populations remain to be discovered.</p> <p>Results</p> <p>We identified 65 copy number variation regions (CNVRs) in 116 normal Korean individuals by analyzing Affymetrix 250 K Nsp whole-genome SNP data. Ten of these CNVRs were novel and not present in the Database of Genomic Variants (DGV). To increase the specificity of CNV detection, three algorithms, CNAG, dChip and GEMCA, were applied to the data set, and only those regions recognized at least by two algorithms were identified as CNVs. Most CNVRs identified in the Korean population were rare (<1%), occurring just once among the 116 individuals. When CNVs from the Korean population were compared with CNVs from the three HapMap ethnic groups, African, European, and Asian; our Korean population showed the highest degree of overlap with the Asian population, as expected. However, the overlap was less than 40%, implying that more CNVs remain to be discovered from the Asian population as well as from other populations. Genes in the novel CNVRs from the Korean population were enriched for genes involved in regulation and development processes.</p> <p>Conclusion</p> <p>CNVs are recently-recognized structural variations among individuals, and more CNVs need to be identified from diverse populations. Until now, CNVs from Asian populations have been studied less than those from European or American populations. In this regard, our study of CNVs from the Korean population will contribute to the full cataloguing of structural variation among diverse human populations.</p

    A Novel Incisionless Disposable Vaginal Device for Female Stress Urinary Incontinence: Efficacy and Quality of Life

    Get PDF
    Purpose This clinical study sought to evaluate the possible clinical effectiveness and practicality of URINO, an innovative, incisionless, and disposable intravaginal device, designed for patients suffering from stress urinary incontinence. Methods A prospective, multicenter, single-arm clinical trial was carried out, involving women diagnosed with stress urinary incontinence who used a self-inserted, disposable intravaginal pessary device. Comparisons were made between the results of the 20-minute pad-weight gain (PWG) test at baseline and visit 3, where the device was applied. After 1 week of device usage, compliance, satisfaction, the sensation of a foreign body, and adverse events were assessed. Results Out of 45 participants, 39 completed the trial and expressed satisfaction within the modified intention-to-treat group. The average 20-minute PWG of participants was 17.2±33.6 g at baseline and significantly dropped to 5.3±16.2 g at visit 3 with device application. A total of 87.2% of participants exhibited a reduction ratio of PWG by 50% or more, surpassing the clinical trial success benchmark of 76%. The mean compliance was recorded as 76.6%±26.6%, the average visual analogue scale score for patient satisfaction was 6.4±2.6, and the sensation of a foreign body, measured on a 5-point Likert scale, was 3.1±1.2 after 1 week of device use. No serious adverse events were reported; there was 1 instance of microscopic hematuria and 2 cases of pyuria, all of which recovered. Conclusions The investigated device demonstrated significant clinical effectiveness and safety for patients with stress urinary incontinence. It was easy to use, showing favorable patient compliance. We propose that these disposable intravaginal pessaries could potentially be an alternative treatment for patients with stress urinary incontinence who are seeking nonsurgical options or are unable to undergo surgery. Trial Registration The study was registered as a clinical trial (KCT0008369)

    Identification of PSEN1 and APP Gene Mutations in Korean Patients with Early-Onset Alzheimer's Disease

    Get PDF
    Although mutations in three genes, amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2), have been identified as genetic causes of early-onset Alzheimer's disease (EOAD), there has been a single report on a PSEN1 mutation in Koreans. In the present study, we performed a genetic analysis of six Korean patients with EOAD. Direct sequencing analysis of the APP, PSEN1 and PSEN2 genes revealed two different mutations of the PSEN1 gene (G206S and M233T) and one mutation of the APP gene (V715M) in three patients with age-at-onset of 34, 35, and 42 yr, respectively. In addition, two patients with age-at-onset of 55 and 62 yr, respectively, were homozygous for APOE ε4 allele. One woman had no genetic alterations. These findings suggest that PSEN1 and APP gene mutations may not be uncommon in Korean patients with EOAD and that genetic analysis should be provided to EOAD patients not only for the identification of their genetic causes but also for the appropriate genetic counseling

    Generation of Whole-Genome Sequencing Data for Comparing Primary and Castration-Resistant Prostate Cancer

    Get PDF
    Because castration-resistant prostate cancer (CRPC) does not respond to androgen deprivation therapy and has a very poor prognosis, it is critical to identify a prognostic indicator for predicting high-risk patients who will develop CRPC. Here, we report a dataset of whole genomes from four pairs of primary prostate cancer (PC) and CRPC samples. The analysis of the paired PC and CRPC samples in the whole-genome data showed that the average number of somatic mutations per patients was 7,927 in CRPC tissues compared with primary PC tissues (range, 1,691 to 21,705). Our whole-genome sequencing data of primary PC and CRPC may be useful for understanding the genomic changes and molecular mechanisms that occur during the progression from PC to CRPC

    Cell-Free miR-27a, a Potential Diagnostic and Prognostic Biomarker for Gastric Cancer

    No full text
    MicroRNAs (miRNAs) have been demonstrated to play an important role in carcinogenesis. Previous studies revealed that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. In this study, we measured the plasma expression levels of three miRNAs (miR-21, miR-27a, and miR-155) to investigate the usefulness of miRNAs for gastric cancer detection. We initially examined plasma miRNA expression levels in a screening cohort consisting of 15 patients with gastric cancer and 15 healthy controls from Korean population, using TaqMan quantitative real-time polymerase chain reaction. We observed that the expression level of miR-27a was significantly higher in patients with gastric cancer than in healthy controls, whereas the miR-21 and miR-155a expression levels were not significantly higher in the patients with gastric cancer. Therefore, we further validated the miR-27a expression level in 73 paired gastric cancer tissues and in a validation plasma cohort from 35 patients with gastric cancer and 35 healthy controls. In both the gastric cancer tissues and the validation plasma cohort, the miR-27a expression levels were significantly higher in patients with gastric cancer. Receiver-operator characteristic (ROC) analysis of the validation cohort, revealed an area under the ROC curve value of 0.70 with 75% sensitivity and 56% specificity in discriminating gastric cancer. Thus, the miR-27a expression level in plasma could be a useful biomarker for the diagnosis and/or prognosis of gastric cancer

    Reduced expression of alanyl aminopeptidase is a robust biomarker of non‐familial adenomatous polyposis and non‐hereditary nonpolyposis colorectal cancer syndrome early‐onset colorectal cancer

    No full text
    Abstract Background Early‐onset colorectal cancer (EOCRC) has been increasing in incidence worldwide but its genomic pathogenesis is mostly undetermined. This study aimed to identify robust EOCRC‐specific gene expression patterns in non‐familial adenomatous polyposis (FAP) and non‐hereditary nonpolyposis colorectal cancer syndrome (HNPCC) EOCRC. Method We first performed gene expression profiling analysis using RNA sequencing of discovery cohort comprised of 49 EOCRC (age 70) specimens. To obtain robust gene expression data from this analysis, we validated differentially expressed genes (DEGs) through TCGA cohort (EOCRC:59 samples, LOCRC:229 samples) and our validation cohort (EOCRC:72 samples, LOCRC:43 samples) using real‐time RT‐PCR. After the validation of DEGs, we validated the selected gene at protein levels using Western blotting. To identify whether genomic methylation regulates the expression of a particular gene, we selected methylation sites using The Cancer Genome Atlas (TCGA) datasets and validated them by pyrosequencing in our validation cohort. Results The EOCRC patients included in this study had significantly more prominent family history of cancer than the LOCRC patients (23 [46.9%] vs. 13 [26%], p = 0.050). Alanyl aminopeptidase (ANPEP) was significantly downregulated in the EOCRC tissues (FC = 1.78, p = 0.0007) and was also commonly downregulated in the TCGA cohort (FC = −1.08, p = 0.0021). Moreover, the ANPEP mRNA and protein expression levels were significantly downregulated in the EOCRC tissues of our validation cohort (p = 0.037 and 0.027). In comparisons of the normal and tumor tissues in public datasets, the ANPEP level was significantly lower in the tumor tissue in the TCGA dataset (p < 2.2 × 10−16) and GSE196006 dataset (p = 0.0005). Furthermore, the ANPEP expression level did not show a decreasing tendency at a young age in the normal colon tissue of the GTEx dataset. Lastly, the hypermethylation of cg26222247 in ANPEP was identified to be weakly associated with reduced ANPEP expression in our EOCRC cohort. Conclusion The reduced expression of ANPEP was identified as a novel biomarker of non‐FAP and non‐HNPCC EOCRC

    Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology

    Get PDF
    RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis
    corecore