1,106 research outputs found

    Development of carbon-based adsorbent for separation of impurities such as siloxane and ammonia from land-fill gas

    Get PDF
    Land-fill gas or bio-gas is composed of large portion of methane and carbon dioxide, and small amount of impurities such as nitrogen, oxygen, hydrogen sulfide, siloxane and ammonia. These gases can be used as a gas-fuel after upgrading treatment. For the application of the land-fill gas and bio-gas as a fuel, we developed highly-performing carbon-based adsorbent which can separate siloxane and ammonia residue from these gases. It was quite necessary to consider the chemical properties of siloxane and ammonia for development of suitable adsorbent of each component. The siloxane can be polymerized in acidic or basic condition to form bulkier species which causes adsorbent deactivation and difficult regeneration. The ammonia gas is well known as basic molecules which have strong affinity to acidic species. In these reasons, we prepared neutral carbon materials by various methods for siloxane adsorption. In addition, we developed carbon-based basic ammonia-adsorbent by simple methods such as the chemical treatment of commercial activated carbon or the impregnation of organic molecules into the activated carbon. And then, adsorption-desorption isotherms and breakthrough curve of siloxane and ammonia were measured for thus synthesized adsorbents. Detail results for synthesis and the adsorption measurement of the studied adsorbents will be presented in the conference

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Get PDF
    We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoOx). The copper nanofibers (CuNFs) were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoOxthin-film (CoOxTF) electrodes, the CuNFs@CoOxelectrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoOxcomposite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries

    Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p

    Adsorptive removal of CO2 from CO2-CH4 mixture using cation-exchanged zeolites

    Get PDF
    Raw natural gas and landfill gas contains methane as its major component, but it also contains considerable amounts of contaminants such as CO2 and H2S (i.e. acid gases) that can cause corrosion and fouling of the pipeline and equipment during transportation and liquefaction. Amine-based CO2 gas removal processes have been employed in the gas industry, but these processes have disadvantages including high regeneration energy requirements and inefficiencies; these issues have not been adequately solved to date. Currently, adsorptive acid gas removal technologies have received significant interest because of the simplicity of adsorbent regeneration by thermal or pressure variation1). Numerous micro- and mesoporous adsorbents including zeolites [2-3], titanosilicates[4], activated carbons[5-6], metal-organic-framework (MOF) [7], and silica-alumina materials[8-9] were studied for this type of application. However, the CO2/CH4 selectivity of the aforementioned adsorbents was not high enough for commercial applications.In this study, different cation-exchanged zeolites were synthesized, physicochemically characterized, and evaluated for adsorptive removal of CO2 from CO2-CH4 mixtures. The adsorption isotherms of CO2 and CH4 in the pressure and temperature ranges 0 − 3MPa and 10 – 40 oC, respectively, for different cation-exchanged zeolites were measured and compared. The ideal-adsorbed solution theory (IAST) was employed for the estimation of CO2/CH4 selectivity for the different cation-exchanged zeolites. References 1) D. Aaron, C. Tsouris, Separ. Sci. Technol. 2005, 40, 321–348 2) J. Collins, US Patent No. 3,751,878. 1973. 3) M. W. Seery, US Patent No. 5,938,819. 1999 4) W. B. Dolan, M.J. Mitariten, US Patent No. 6,610,124 B1. 2003 5) A. Kapoor, R.T. Yang, Chem. Eng. Sci. 1989, 44, 1723–1733 6) A. Jayaraman, Chiao, A. S.; Padin, J.; Yang, R. T.; Munson, C. L., Separ. Sci. Technol. 2002 37, 2505–2528 7) L. Hamon, E. Jolimaitre, G. Pringruber , Ind. Eng. Chem. Res. 2010, 49, 7497-7503 8) W.B. Dolan, M.J. Mitariten, US patent No. 2003/0047071, 2003 9) G. Bellussi, P. Broccia, A. Carati, R. Millini, P. Pollesel, C. Rizzo, M. Tagliabue, Micropor. Mesopor. Mat., 2011, 146, 134–14

    Three newly recorded plants of South Korea: Muhlenbergia ramosa (Hack. ex Matsum.) Makino, Dichanthelium acuminatum (Sw.) Gould & C.A. Clark and Rottboellia cochinchinensis (Lour.) Clayton

    Get PDF
    AbstractThree new Poaceae species are reported in South Korea. Muhlenbergia ramosa was found in Boryeong-si, Iksan-si, Jangsu-gun and Gwangju. Dichanthelium acuminatum and Rottboellia cochinchinensis were found in Jeonju-si, Jeollabuk-do and Seogwipo-si, Jeju-do which were thought to be alien species. Genus Dichanthelium and Rottboellia are newly reported in South Korea. Muhlenbergia ramosa was thought to be native to Korea

    Breakdown of the interlayer coherence in twisted bilayer graphene

    Full text link
    Coherent motion of the electrons in the Bloch states is one of the fundamental concepts of the charge conduction in solid state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by e.g. large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite, and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure
    corecore