3,912 research outputs found

    Representing an Object by Interchanging What with Where

    Get PDF
    Exploring representations is a fundamental step towards understanding vision. The visual system carries two types of information along separate pathways: One is about what it is and the other is about where it is. Initially, the what is represented by a pattern of activity that is distributed across millions of photoreceptors, whereas the where is 'implicitly' given as their retinotopic positions. Many computational theories of object recognition rely on such pixel-based representations, but they are insufficient to learn spatial information such as position and size due to the implicit encoding of the where information. 
Here we try transforming a retinal image of an object into its internal image via interchanging the what with the where, which means that patterns of intensity in internal image describe the spatial information rather than the object information. To be concrete, the retinal image of an object is deformed and turned over into a negative image, in which light areas appear dark and vice versa, and the object's spatial information is quantified with levels of intensity on borders of that image. 
Interestingly, the inner part excluding the borders of the internal image shows the position and scale invariance. In order to further understand how the internal image associates the what and where, we examined the internal image of a face which moves or is scaled on the retina. As a result, we found that the internal images form a linear vector space under the object translation and scaling. 
In conclusion, these results show that the what-where interchangeability might play an important role for organizing those two into internal representation of brain

    Improving Term Frequency Normalization for Multi-topical Documents, and Application to Language Modeling Approaches

    Full text link
    Term frequency normalization is a serious issue since lengths of documents are various. Generally, documents become long due to two different reasons - verbosity and multi-topicality. First, verbosity means that the same topic is repeatedly mentioned by terms related to the topic, so that term frequency is more increased than the well-summarized one. Second, multi-topicality indicates that a document has a broad discussion of multi-topics, rather than single topic. Although these document characteristics should be differently handled, all previous methods of term frequency normalization have ignored these differences and have used a simplified length-driven approach which decreases the term frequency by only the length of a document, causing an unreasonable penalization. To attack this problem, we propose a novel TF normalization method which is a type of partially-axiomatic approach. We first formulate two formal constraints that the retrieval model should satisfy for documents having verbose and multi-topicality characteristic, respectively. Then, we modify language modeling approaches to better satisfy these two constraints, and derive novel smoothing methods. Experimental results show that the proposed method increases significantly the precision for keyword queries, and substantially improves MAP (Mean Average Precision) for verbose queries.Comment: 8 pages, conference paper, published in ECIR '0

    A study of the causal relationship between IT governance inhibitors and its success in Korea enterprises

    Get PDF
    노트 : Proceedings of the 41st Hawaii International Conference on System Sciences - 2008 행사명 : 41st Hawaii International Conference on System Sc

    Electron and phonon band-structure calculations for the antipolar SrPt3_{3}P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons

    Full text link
    SrPt3P has recently been reported to exhibit superconductivity with Tc = 8.4 K. To explore its superconducting mechanism, we have performed electron and phonon band calculations based on the density functional theory, and found that the superconductivity in SrPt3P is well described by the strong coupling phonon-mediated mechanism. We have demonstrated that superconducting charge carriers come from pd\pi-hybridized bands between Pt and P ions, which couple to low energy (~ 5 meV) phonon modes confined on the ab in-plane. These in-plane phonon modes, which do not break antipolar nature of SrPt3P, enhance both the electron-phonon coupling constant \lambda and the critical temperature Tc. There is no hint of a specific phonon softening feature in the phonon dispersion, and the effect of the spin-orbit coupling on the superconductivity is found to be negligible.Comment: 5 pages, 5 figures, 1 tabl

    A KINEMATICAL ANALYSIS OF THE TAEKWONDO APCHAGI

    Get PDF
    The purpose of this study was to investigate the kinematical characteristics of Apchagi in Taekwondo kicking motion using the techniques of three dimensional cinematographic techniques. Four college athletes were selected as subjects. After analyzing Apchgi motion, it is concluded the followings. In performing Apchagi, the average time was 0.61 ± 0.02 seconds and the center of body moved right-left (X-axis) 3.7 ± 0.8 cm, forward-back (Y-axis) 46.1 ± 4.5 cm, up-down (Z-axis) 14.4 ± 2.4 cm. Y-axis movement showed the biggest scale among these three direction variances because it need to move the body forward to kick the target. In preparing the motion, pelvic angle showed 150.9 ± 1.05° and in kicking motion 118.5 ± 1.28°. Knee's angle was 71.0 ± 1.33° in f1exion motion. On the other hand, Ankle angle was 113.2 ± 1.73° for preparing the motion and 136.1 ± 4.16° for taking off motion. For flexion phase it increased up to 162.1 ± 5.85° and decreased to 150.9 ± 3.50° in kicking motion

    A Patterned Single Layer Graphene Resistance Temperature Sensor

    Get PDF
    Micro-fabricated single-layer graphenes (SLGs) on a silicon dioxide (SiO2)/Si substrate, a silicon nitride (SiN) membrane, and a suspended architecture are presented for their use as temperature sensors. These graphene temperature sensors act as resistance temperature detectors, showing a quadratic dependence of resistance on the temperature in a range between 283 K and 303 K. The observed resistance change of the graphene temperature sensors are explained by the temperature dependent electron mobility relationship (~T−4) and electron-phonon scattering. By analyzing the transient response of the SLG temperature sensors on different substrates, it is found that the graphene sensor on the SiN membrane shows the highest sensitivity due to low thermal mass, while the sensor on SiO2/Si reveals the lowest one. Also, the graphene on the SiN membrane reveals not only the fastest response, but also better mechanical stability compared to the suspended graphene sensor. Therefore, the presented results show that the temperature sensors based on SLG with an extremely low thermal mass can be used in various applications requiring high sensitivity and fast operation
    corecore