2,545 research outputs found
Adaptive female choice for middle-aged mates in a lekking sandfly
Most theoretical models of age-related mate choice predict that females should prefer older males because they have proven survival ability. An alternative view is that older males represent inferior mates because of negative genetic correlations between early and late fitness components, or because older males have traded off longevity against other fitness components, have accumulated deleterious germ-line mutations, or are less well adapted to current conditions than more recently born individuals. While numerous studies have reported female choice for older males, few have explicitly examined the fitness consequences of such a preference. We present evidence from a lekking sandfly, Lutzomyia longipalpis , showing that choosy females discriminate against older males and gain a fitness benefit from their choice. When permitted free choice from an aggregation consisting of males aged zero to two days (young), four to six days (middle-aged) and eight to ten days (old), females preferentially mated with middle-aged males, but all measures of female reproductive success were independent of male age. In contrast, when a second set of females was randomly assigned single virgin males of known age, the eggs of those paired to old mates exhibited lower hatching success than the eggs of females mated to young or middle-aged males. These results suggest that females avoid mating with older males because they represent poorer quality mates. Age-related differences in male quality may have a genetic basis, but could equally well arise through a phenotypic decline in sperm quality or sperm transfer ability with male age. The lack of evidence of female discrimination against older males from other studies may be because these did not explore the reproductive success of the full age range of males
Analysis of the vertexes , and radiative decays ,
In this article, we study the vertexes and with the light-cone QCD sum rules, then assume the vector meson
dominance of the intermediate , and , and
calculate the radiative decays and .Comment: 28 pages, 4 tables, revised versio
Radiative Decays of Decuplet to Octet Baryons in Light Cone QCD
The radiative decays of decuplet to octet baryons are analyzed within the
light cone QCD sum rules framework.The electromagnetic transition form factors
for these decays are calculated up to twist four accuracy for photon wave
functions as well as including first order strange quark mass corrections. A
comparison of our results with predictions of lattice theory and existing
experimental data is presented.Comment: 43 pages, 30 figures, uses graphicx and amssymb, included a more
general analysis, Conclusions change
The excitation mechanisms and evolutionary stages of UWISH2 planetary nebula candidates
We present medium-resolution K-band long-slit spectroscopy of 29 true, likely, possible, and candidate Galactic Plane planetary nebulae (PNe) from the UWISH2 survey, many of which have only been recently discovered. These objects are bright in molecular hydrogen (H2) emission, and many have bipolar morphologies. Through the detection of the Brγ emission line, which traces ionized hydrogen, we find that the majority of the candidate PNe are indeed likely to be PNe, while 2 of the targets are more likely young stellar objects (YSOs) or pre-planetary nebulae (pPNe). We detect Brγ in 13 objects which have no detection in IPHAS or SHS Hα surveys. This implies that they are potential members of the little-known optically obscured PN population, hidden from wide-field optical surveys. We use the spatial extent of the H2 1-0 S(1) and Brγ lines to estimate the evolutionary stage of our targets, and find that W-BPNe (bipolar PNe with pinched waist morphologies) are likely to be younger objects, while R-BPNe (bipolar PNe with large ring structures) are more evolved. We use line ratios to trace the excitation mechanism of the H2, and find the 1-0 S(1) / 2-1 S(1) and 1-0 S(1) / Brγ ratios are higher for R-BPNe, implying the H2 is thermally excited. However, in W-BPNe, these ratios are lower, and so UV-fluorescence may be contributing to the excitation of H2
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
Separable potential model for interactions at low energies
The effective separable meson-baryon potentials are constructed to match the
equivalent chiral amplitudes up to the second order in external meson momenta.
We fit the model parameters (low energy constants) to the threshold and low
energy data. In the process, the -proton bound state problem is
solved exactly in the momentum space and the 1s level characteristics of the
kaonic hydrogen are computed simultaneously with the available low energy
cross sections. The model is also used to describe the
mass spectrum and the energy dependence of the amplitude.Comment: 31 pages, v2 - added corrections to make it compatible with the
published versio
The 6dF galaxy survey: cosmological constraints from the velocity power spectrum
We present scale-dependent measurements of the normalized growth rate of structure fσ8(k, z = 0) using only the peculiar motions of galaxies. We use data from the 6-degree Field Galaxy Survey velocity sample together with a newly compiled sample of low-redshift (z 300 h−1 Mpc, which represents one of the largest scale growth rate measurement to date. We find no evidence for a scale-dependence in the growth rate, or any statistically significant variation from the growth rate as predicted by the Planck cosmology. Bringing all the scales together, we determine the normalized growth rate at z = 0 to ∼15 per cent in a manner independent of galaxy bias and in excellent agreement with the constraint from the measurements of redshift-space distortions from 6-degree Field Galaxy Survey. We pay particular attention to systematic errors. We point out that the intrinsic scatter present in Fundamental Plane and Tully–Fisher relations is only Gaussian in logarithmic distance units; wrongly assuming it is Gaussian in linear (velocity) units can bias cosmological constraints. We also analytically marginalize over zero-point errors in distance indicators, validate the accuracy of all our constraints using numerical simulations, and demonstrate how to combine different (correlated) velocity surveys using a matrix ‘hyperparameter’ analysis. Current and forthcoming peculiar velocity surveys will allow us to understand in detail the growth of structure in the low-redshift universe, providing strong constraints on the nature of dark energy
Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of
the large scale structure gas distribution will be probed with current and
upcoming wide-field small angular scale cosmic microwave background
experiments. We study the generation of pressure fluctuations by baryons which
are present in virialized dark matter halos and by baryons present in small
overdensities. For collapsed halos, assuming the gas distribution is in
hydrostatic equilibrium with matter density distribution, we predict the
pressure power spectrum and bispectrum associated with the large scale
structure gas distribution by extending the dark matter halo approach which
describes the density field in terms of correlations between and within halos.
The projected pressure power spectrum allows a determination of the resulting
SZ power spectrum due to virialized structures. The unshocked photoionized
baryons present in smaller overdensities trace the Jeans-scale smoothed dark
matter distribution. They provide a lower limit to the SZ effect due to large
scale structure in the absence of massive collapsed halos. We extend our
calculations to discuss higher order statistics, such as bispectrum and
skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a
probe of correlations between dark matter and baryon density fields, while the
probability distribution functions of peak statistics of SZ halos in wide field
CMB data can be used as a probe of cosmology and non-Gaussian evolution of
large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D.
(in press
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
The semileptonic decays of the B_c meson
We study the semileptonic transitions B_c to \eta_c, J/\psi, D, D^*, B, B^*,
B_s, B_s^* in the framework of a relativistic constituent quark model. We use
experimental data on leptonic J/\psi decay, lattice and QCD sum rule results on
leptonic B_c decay, and on radiative \eta_c transitions to adjust the quark
model parameters. We compute all form factors of the above semileptonic
B_c-transitions and give predictions for various semileptonic B_c decay modes
including their \tau-modes when they are kinematically accessible. The
implications of heavy quark symmetry for the semileptonic decays are discussed
and are shown to be manifest in our explicit relativistic quark model
calculation. A comparison of our results with the results of other calculations
is performed.Comment: 31 pages Latex (uses epsf, revtex). Section II expanded, typos
corrected. This version will appear in Phys. Rev.
- …