695 research outputs found

    Testing surfactants as additives for clay improvement: compaction and suction effects

    Get PDF
    This paper presents an exploratory study on surfactants as additives to improve soil properties. It is hypothesized that surfactant molecules populate the air-water interfaces reducing surface tension and suction thus allowing a control of the mechanical response of the soil. Suction measurements by means of a high suction tensiometer, compaction tests and Atterberg limits were conducted in mixtures of sand and kaolin, with and without a surfactant solution. The results revealed a prominent effect on suction, but to a lesser extent on the Atterberg limits and compaction behavior (the maximum dry density). This targeted effect of the surfactants suggests its molecules populate, not only the air-water interfaces decreasing surface tension, but may be adsorbing to the clay particles and forming micelles in the pore water as well. Therefore the interplay between the three may influence the soil behavior

    Mortality study of 18 000 patients treated with omeprazole.

    Get PDF
    Background: The long term safety of potent gastric acid suppressive therapy has yet to be established. Method: General practice record review at a median interval of 26 months followed by retrieval of details of all deaths within four years using the UK National Health Service Central Registers in 17 936 patients prescribed omeprazole in 1993–1995. Death rates were compared with general population rates. Results: Records of 17 489 patients (97.5%) were examined. A total of 12 703 patients received further scripts for antisecretory drugs, 8097 for omeprazole only (65.6%): 3097 patients have died. All cause mortality was higher in the first year (observed/expected (O/E) 1.44 (95% confidence intervals (CI) 1.34–1.55); p<0.0001) but had fallen to population expectation by the fourth year. There were significant mortality increases in the first year, falling to or below population expectation by the fourth year, for deaths ascribed to neoplasms (1.82 (95% CI 1.58–2.08); p<0.0001), circulatory diseases (1.27 (95% CI 1.13–1.43); p<0.0001), and respiratory diseases (1.37 (95% CI 1.12–1.64); p<0.001). Increased mortality ascribed to digestive diseases (2.56 (95% CI 1.87–3.43); p<0.0001) persisted, although reduced. Increased mortality rates for cancers of the stomach (4.06 (95% CI 2.60–6.04); p<0.0001), colon and rectum (1.40 (95% CI 0.84–2.18); p=0.075), and trachea, bronchus, and lung (1.64 (95% CI 1.19–2.19); p<0.01) seen in the first year had disappeared by the fourth year but that for cancer of the oesophagus had not (O/E 7.35 (95% CI 5.20–10.09) (p<0.0001) in year 1; 2.88 (95% CI 1.62–4.79) (p<0.001) in year 4). Forty of 78 patients dying of oesophageal cancer had the disease present at registration. Twenty seven of those remaining cases had clinical evidence of Barrett’s disease, stricture, ulcer, or oesophagitis at registration (O/E 3.30 (95% CI 2.17–4.80)). Six deaths occurred in patients with hiatal hernia or reflux only (O/E 1.02 (95% CI 0.37–2.22)) and five in patients without oesophageal disease (O/E 0.77 (95% CI 0.25–1.80)). No relationships were detected with numbers of omeprazole scripts received. Conclusions: Increases in mortality associated with treatment are due to pre- existing illness, including pre-existing severe oesophageal disease. There was no evidence of an increased risk of oesophageal adenocarcinoma in those without oesophageal mucosal damage recorded at registration

    Threadleaf Groundsel and Forage Response to Herbicides in the Davis Mountains.

    Get PDF
    12 p

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films

    Get PDF
    We perform molecular dynamics simulations of an idealized polymer melt surrounding a nanoscopic filler particle to probe the effects of a filler on the local melt structure and dynamics. We show that the glass transition temperature TgT_g of the melt can be shifted to either higher or lower temperatures by appropriately tuning the interactions between polymer and filler. A gradual change of the polymer dynamics approaching the filler surface causes the change in the glass transition. We also find that while the bulk structure of the polymers changes little, the polymers close to the surface tend to be elongated and flattened, independent of the type of interaction we study. Consequently, the dynamics appear strongly influenced by the interactions, while the melt structure is only altered by the geometric constraints imposed by the presence of the filler. Our findings show a strong similarity to those obtained for ultra-thin polymer films (thickness 100\lesssim 100 nm) suggesting that both ultra-thin films and filled-polymer systems might be understood in the same context

    DBI Inflation in the Tip Region of a Warped Throat

    Get PDF
    Previous work on DBI inflation, which achieves inflation through the motion of a D3D3 brane as it moves through a warped throat compactification, has focused on the region far from the tip of the throat. Since reheating and other observable effects typically occur near the tip, a more detailed study of this region is required. To investigate these effects we consider a generalized warp throat where the warp factor becomes nearly constant near the tip. We find that it is possible to obtain 60 or more e-folds in the constant region, however large non-gaussianities are typically produced due to the small sound speed of fluctuations. For a particular well-studied throat, the Klebanov-Strassler solution, we find that inflation near the tip may be generic and it is difficult to satisfy current bounds on non-gaussianity, but other throat solutions may evade these difficulties.Comment: 26 pages, 1 figure. v1. references added, typos corrected v2. clarifications mad

    Initial State Interactions for KK^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the KpK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy KpK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte

    Inflation with improved D3-brane potential and the fine tunings associated with the model

    Full text link
    We investigate brane-antibrane inflation in a warped deformed conifold background that includes contributions to the potential arising from imaginary anti-self-dual (IASD) fluxes including the term with irrational scaling dimension discovered recently. We find that the model can give rise to required number of e-foldings; observational constraint on COBE normalization is easily satisfied and low value of the tensor to scalar ratio of perturbations is achieved. We observe that these corrections to the effective potential help in relaxing the severe fine tunings associated with the earlier analysis.Comment: 8 pages, 4 figures; typos corrected, minor clarifications and new refs added, to appear in epj

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase
    corecore