74,495 research outputs found

    Energy-momentum balance in quantum dielectrics

    Full text link
    We calculate the energy-momentum balance in quantum dielectrics such as Bose-Einstein condensates. In agreement with the experiment [G. K. Campbell et al. Phys. Rev. Lett. 94, 170403 (2005)] variations of the Minkowski momentum are imprinted onto the phase, whereas the Abraham tensor drives the flow of the dielectric. Our analysis indicates that the Abraham-Minkowski controversy has its root in the Roentgen interaction of the electromagnetic field in dielectric media

    Recent direct measurement of the Top quark mass and quasi-infrared fixed point

    Get PDF
    We note that the recent direct measurement of the top quark mass at 173.3±5.6(stat)±6.2(syst)173.3 \pm 5.6 (stat) \pm 6.2 (syst) by D0 collaboration severely constrains the theoretically attractive infra-red fixed point scenario of the top quark Yukawa coupling in supersymmetric GUTs. For one-step unified models the above mentioned measurement bounds the arbitrary but experimentally determinable parameter tanβ\tan \beta to the range 1.3tanβ2.11.3 \le \tan \beta \le 2.1. Further crunch on the top quark mass may determine tanβ\tan \beta even more accurately within the fixed point scenario. On the other hand an experimental value of tanβ>2.1\tan \beta > 2.1 will rule out the fixed point scenario bounding ht2(MX)/4πh^2_t(M_X)/4 \pi to 0.022 from above.Comment: 7 pages, Latex with epsf style, 1 figure, captions.st

    Vsini-s for late-type stars from spectral synthesis in K-band region

    Get PDF
    We analyse medium-resolution spectra (R\sim 18000) of 19 late type dwarfs in order to determine vsini-s using synthetic rather than observational template spectra. For this purpose observational data around 2.2 μ\mum of stars with spectral classes from G8V to M9.5V were modelled. We find that the Na I (2.2062 and 2.2090 μ\mum) and 12^{12}CO 2-0 band features are modelled well enough to use for vsini determination without the need for a suitable observational template spectra. Within the limit of the resolution of our spectra, we use synthetic spectra templates to derive vsini values consistent with those derived in the optical regime using observed templates. We quantify the errors in our vsini determination due to incorrect choice of model parameters \Teff, log gg, vmicrov_{\rm micro}, [Fe/H] or FWHM and show that they are typically less than 10 per cent. We note that the spectral resolution of our data(\sim 16 km/s) limited this study to relatively fast rotators and that resolutions of 60000 will required to access most late-type dwarfs.Comment: 8 pages, 4 figures, 3 tables, accepted to the MNRA

    Deducing radiation pressure on a submerged mirror from the Doppler shift

    Full text link
    Radiation pressure on a flat mirror submerged in a transparent liquid, depends not only on the refractive index n of the liquid, but also on the phase angle psi_0 of the Fresnel reflection coefficient of the mirror, which could be anywhere between 0^{\circ} and 180^{\circ}. Depending on the value of psi_0, the momentum per incident photon picked up by the mirror covers the range between the Abraham and Minkowski values, i.e., the interval (2\hbarw_0/nc,2n\hbarw_0/c). Here \hbar is the reduced Planck constant, w_0 is the frequency of the incident photon, and c is the speed of light in vacuum. We argue that a simple experimental setup involving a dielectric slab of refractive index n, a vibrating mirror placed a short distance behind the slab, a collimated, monochromatic light beam illuminating the mirror through the slab, and an interferometer to measure the phase of the reflected beam, is all that is needed to deduce the precise magnitude of the radiation pressure on a submerged mirror. In the proposed experiment, the transparent slab plays the role of the submerging liquid (even though it remains detached from the mirror at all times), and the adjustable gap between the mirror and the slab simulates the variable phase-angle psi_0. The phase of the reflected beam, measured as a function of time during one oscillation period of the mirror, then provides the information needed to determine the gap-dependence of the reflected beam's Doppler shift and, consequently, the radiation pressure experienced by the mirror.Comment: 9 pages, 2 figures, 13 equation

    Recommended radiative property data for Venusian entry calculations

    Get PDF
    A compilation of experimental and calculated data on the radiative properties species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound, and free-free continua are considered for the principal radiating species of shock heated carbon dioxide. A limited amount of data pertinent to the species in the ablation layer is also included. The assumption is made that the Venus atmosphere so closely approximates pure CO2 that the inviscid layer radiation is due almost entirely to thermally excited CO2. The only exception is the inclusion of data on the Violet band system of CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas porperties is also included

    Radiative property data for Venusian entry: A compendium

    Get PDF
    A compilation of experimental and calculated data on the radiative properties of species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound continua, and free-free continua are considered for the principal radiating species of shock-heated carbon dioxide. Data pertinent to the species in the ablation layer are included. The Venus atmosphere so closely approximates pure carbon dioxide (CO2) that the inviscid layer radiation is due almost entirely to thermally excited CO2. Data are included on the violet band system of the cyanogen radical CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas properties is included

    Stochastic models for atomic clocks

    Get PDF
    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity

    Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Get PDF
    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions
    corecore