36 research outputs found

    The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone

    Get PDF
    Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma

    Mutational Analysis of the Critical Bases Involved in Activation of the AreR-Regulated σ(54)-Dependent Promoter in Acinetobacter sp. Strain ADP1

    No full text
    The areR gene in Acinetobacter sp. strain ADP1 regulates the expression of the areCBA genes, which determine growth on benzyl alkanoates. AreR is a member of the NtrC/XylR family of regulatory proteins as determined by sequence homology. Seventy-nine bases upstream of the start of transcription is a region carrying two overlapping inverted repeat (IR) sequences that we predict to be the AreR binding site, also known as the upstream activator site (UAS). IR1 is a near-perfect (16 of 17 bp) repeat separated by 1 bp, and IR2 consists of 9- and 7-bp perfect repeats with a 3-bp gap, with the central bases of the two arms of the repeat separated by 44 and 22 bp. We report here a method for site-directed mutagenesis of chromosomal genes in ADP1 in which linear fragments generated by overlap extension PCR are used to transform ADP1 via its natural transformation system and recombinants are selected by a marker exchange-eviction strategy with a newly created sacB-Km cassette. This method was used to generate 38 strains with designed mutations in the putative UAS upstream of areCBA. The effects of the mutations on areCBA expression were measured by enzyme assays of benzyl alcohol dehydrogenase (AreB) and by reporter gene assays of lacZ inserted into areA. Substitutions or deletions in IR1 had more deleterious effects upon expression when they were in its central region, which overlaps the left arm of IR2, than when they were in its outer regions. By contrast, substitutions in the right arm of IR2 resulted in mutants with relatively high expression levels compared to that of the wild type. Effects of deletions in the right arm of IR2 were very dependent upon the length of the deletion, with 3- or 5-bp deletions reducing expression by >90% whereas an 11-bp deletion in the same area reduced the expression levels by only 50%, suggesting that alterations in the distance and the orientation of the UAS relative to the −24, −12 σ(54) promoter are critical

    A Third Transposable Element, ISPpu12, from the Toluene-Xylene Catabolic Plasmid pWW0 of Pseudomonas putida mt-2

    No full text
    A 3,372-bp insertion sequence, ISPpu12, has been identified on the archetypal toluene-xylene TOL catabolic plasmid pWW0 from Pseudomonas putida mt-2. The insertion sequence element is located on the plasmid between bases 84397 and 87768 in a region which also contains the termini and transposase genes of the catabolic transposons Tn4651 and Tn4653 (A. Greated, L. Lambertson, P. A. Williams, and C. M. Thomas, Environ. Microbiol., in press). ISPpu12 has terminal inverted repeats of 24 bp with three mismatches and contains four open reading frames, a tnpA homologue and three open reading frames (lspA, orf1, and orf2) of undetermined function. After insertion in vitro of a Km(r) cassette into ISPpu12 either in the intergenic region between orf1 and orf2 or directly into the orf1 gene and ligation into a suicide vector, the modified ISPpu12-Km transposes at high frequency, often in multiple copies, into the chromosome of a P. putida recipient. Inactivation of lspA, orf1, and orf2 by introducing a 7-bp deletion into the 5′ region of each gene had no major effect upon transposition, but a similar mutation of tnpA completely eliminated transposition. Analysis of the literature and of strains derived from the chlorobenzoate-degrading Pseudomonas sp. strain B13 suggests that the promiscuity of this element has played an important role in the history of plasmid pWW0. Database comparisons and the accompanying paper (A. J. Weightman, A. W. Topping, K. E. Hill, L. L. Lee, K. Sakai, J. H. Slater, and A. W. Thomas, J. Bacteriol. 184:6581-6591, 2002) show that ISPpu12 is a transposable element also found in other bacteria

    The Naphthalene Catabolic (nag) Genes of Ralstonia sp. Strain U2 Are an Operon That Is Regulated by NagR, a LysR-Type Transcriptional Regulator

    No full text
    In Ralstonia sp. strain U2, the nag catabolic genes, which encode the enzymes for the pathway that catabolizes naphthalene via the alternative ring cleavage gentisate pathway, are transcribed as an operon under the same promoter. nagR, which encodes a LysR-type transcriptional regulator, is divergently transcribed compared to the nag catabolic genes. A 4-bp frameshift deletion in nagR demonstrated that NagR is required for expression of the nag operon. The transcriptional start of the nag operon was mapped, and a putative −10, −35 σ(70)-type promoter binding site was identified. Further upstream, a site proximal to the promoter was identified as a site that has bases which have been found to be conserved in the activator-binding motif of other naphthalene pathways. Transcriptional fusion studies demonstrated that NagR regulates the expression of the nag operon positively in the presence of salicylate and to a lesser extent in the presence of 2-nitrobenzoate. Mutation of the LysR-type activator-binding motif in the nag promoter-proximal region resulted in a loss of inducibility of a lacZ reporter gene transcriptionally fused to nagAa, the first gene of the operon. However, other mutations in the region increased the effectiveness of salicylate as an inducer
    corecore