467 research outputs found

    Promoting Physical Activity in Low Income African Americans: Project LAPS

    Full text link
    Low income African Americans are at increased risk for physical inactivity and related chronic illnesses. Thus, effective interventions are needed to address these health disparities. The current study examined the efficacy of a home-based physical activity intervention among a low income African American sample with high rates of chronic illnesses (obesity, hypertension, diabetes, high cholesterol). Participants (n=214) were randomly assigned to either the home-based physical activity intervention (self-help print materials, five monthly newsletters, two telephone counseling sessions) or an attention control condition, which promoted healthy diet. Results indicated that the intervention did not produce significantly greater increases in physical activity from baseline to six months than the control group. Lessons learned from the current study include the importance of using proactive retention strategies with low income African American participants and taking into consideration the cultural relevance of the intervention

    Commencement of the Class of 2015

    Get PDF
    Let me conclude my remarks this morning with a quote from Countee Cullen, a poet of the Harlem Renaissance who graduated from NYU, then Harvard University. He said, “For we must be one thing or the other, an asset or a liability, the sinew in your wing to help you soar, or the chain to bind you to earth” (Countee Cullen). Class of 2015, I ask: Will you be an asset or a liability? Class of 2015, will you give back and pay it forward? Class of 2015, will you invest in this world? Will you advance the human condition? Will you create opportunities for others? Will you make a positive impact? Will you help people and our planet? By saying yes, by saying “we will”—you will soar! Ladies and gentlemen, I present you the Class of 2015—the Class that will continue to soar! Thank you. And now, it brings me great pleasure and it is my great honor to accept the Class of 2015. By the authority vested in me as President of the Illinois Mathematics and Science Academy and on behalf of the Board of Trustees and the State of Illinois, I accept these students as graduates of IMSA and proclaim them as worthy to receive their Diplomas and Medallions. José M. Torres, Ph.D

    Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases.

    Get PDF
    There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases

    KDM4B is a master regulator of the estrogen receptor signalling cascade

    Get PDF
    The importance of the estrogen receptor (ER) in breast cancer (BCa) development makes it a prominent target for therapy. Current treatments, however, have limited effectiveness, and hence the definition of new therapeutic targets is vital. The ER is a member of the nuclear hormone receptor superfamily of transcription factors that requires co-regulator proteins for complete regulation. Emerging evidence has implicated a small number of histone methyltransferase (HMT) and histone demethylase (HDM) enzymes as regulators of ER signalling, including the histone H3 lysine 9 tri-/di-methyl HDM enzyme KDM4B. Two recent independent reports have demonstrated that KDM4B is required for ER-mediated transcription and depletion of the enzyme attenuates BCa growth in vitro and in vivo. Here we show that KDM4B has an overarching regulatory role in the ER signalling cascade by controlling expression of the ER and FOXA1 genes, two critical components for maintenance of the estrogen-dependent phenotype. KDM4B interacts with the transcription factor GATA-3 in BCa cell lines and directly co-activates GATA-3 activity in reporter-based experiments. Moreover, we reveal that KDM4B recruitment and demethylation of repressive H3K9me3 marks within upstream regulatory regions of the ER gene permits binding of GATA-3 to drive receptor expression. Ultimately, our findings confirm the importance of KDM4B within the ER signalling cascade and as a potential therapeutic target for BCa treatment

    Practice makes plasticity: 10-Hz rTMS enhances LTP-like plasticity in musicians and athletes

    Get PDF
    Motor skill learning has been linked to functional and structural changes in the brain. Musicians and athletes undergo intensive motor training through the practice of an instrument or sport and have demonstrated use-dependent plasticity that may be subserved by long-term potentiation (LTP) processes. We know less, however, about whether the brains of musicians and athletes respond to plasticity-inducing interventions, such as repetitive transcranial magnetic stimulation (rTMS), differently than those without extensive motor training. In a pharmaco-rTMS study, we evaluated motor cortex excitability before and after an rTMS protocol in combination with oral administration of D-cycloserine (DCS) or placebo. In a secondary covariate analysis, we compared results between self-identified musicians and athletes (M&As) and non-musicians and athletes (non-M&As). Three TMS measures of cortical physiology were used to evaluate plasticity. We found that M&As did not have higher baseline corticomotor excitability. However, a plasticity-inducing protocol (10-Hz rTMS in combination with DCS) strongly facilitated motor-evoked potentials (MEPs) in M&As, but only weakly in non-M&As. Placebo and rTMS produced modest facilitation in both groups. Our findings suggest that motor practice and learning create a neuronal environment more responsive to plasticity-inducing events, including rTMS. These findings may explain one factor contributing to the high inter-individual variability found with MEP data. Greater capacity for plasticity holds implications for learning paradigms, such as psychotherapy and rehabilitation, by facilitating LTP-like activation of key networks, including recovery from neurological/mental disorders

    A Baker\u27s Dozen of Top Antimicrobial Stewardship Intervention Publications in 2018

    Get PDF
    © The Author(s) 2019 Phytochemical investigation of methanolic extract of Limonium leptophyllum (Plumbaginaceae), led to the isolation of 1 new isoflavonoid with a rare 5-membered dihydrofuran ring (1, leptoisoflavone A) and 8 known compounds. The known isolated compounds were identified as euchrenone b9 (2), auriculasin (3), kaempferol (4), avicularoside (5), myrice-tin-3-arabinoside (6), trans-N-feruloyltyramine (7), trans-N-caffeoyltyramine (8), and β-sitosterol (9). The crude methanolic extract exhibited moderate activity toward endocannabinoid receptors. Auriculasin (3) showed activity toward cannabinoid receptor type 1 (86.7% displacement with IC50 8.92 μM)

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    The Development and Initial Validation of the Irrational Performance Beliefs Inventory (iPBI)

    Get PDF
    © 2016 Hogrefe Publishing. The growing use of Rational Emotive Behavior Therapy (REBT) in performance contexts (e.g., business, sport) has highlighted the absence of a contextually valid and reliable measure of irrational beliefs. This paper reports the development and initial validation of the Irrational Performance Beliefs Inventory (iPBI). The iPBI was developed to provide a validated measure of the four core irrational beliefs of REBT theory. Item development was completed in three stages comprising two expert panels and one novice panel, reducing and refining 176 items to 133. Then, exploratory and confirmatory factor analyses were used to refine the measure and reduce the number of items. A total of 665 business professionals completed the 133-item scale, alongside an established measure of irrational beliefs and a measure of negative emotion. A 28-item measure was developed (the iPBI) that showed an acceptable fit to the four-factor REBT structure. The iPBI correlated well with the established irrational beliefs measure, and with anxiety, depression, and anger, demonstrating concurrent and predictive validity. Further validation efforts are required to assess the validity and reliability of the iPBI in alternative samples in other performance-related contexts

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914
    • …
    corecore