4,661 research outputs found

    Clustered Massive Star Formation in Molecular Clouds

    Full text link
    I review some important questions in the field of massive star formation: What are the initial conditions for proto star clusters and how do they arise? What are the initial conditions for individual massive star formation within star clusters? How do massive protostars accumulate their mass? I compare the Turbulent Core Model (McKee & Tan 2003) to several nearby regions, including Orion KL. Here I also discuss the origin of BN's high proper motion.Comment: 10 pages, 2 figures, invited review, to appear in "Massive Star Birth - A Crossroads of Astrophysics" (CUP), eds. R. Cesaroni, E. Churchwell, M. Felli, and C. M. Walmsle

    Fire from Ice - Massive Star Birth from Infrared Dark Clouds

    Full text link
    I review massive star formation in our Galaxy, focusing on initial conditions in Infrared Dark Clouds (IRDCs), including the search for massive pre-stellar cores (PSCs), and modeling of later stages of massive protostars, i.e., hot molecular cores (HMCs). I highlight how developments in astrochemistry, coupled with rapidly improving theoretical/computational and observational capabilities are helping to improve our understanding of the complex process of massive star formation.Comment: To appear in proceedings of IAU Symp. 322, Astrochemistry VII Through the Cosmos from Galaxies to Planet

    High-dynamic-range extinction mapping of infrared dark clouds: Dependence of density variance with sonic Mach number in molecular clouds

    Full text link
    Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. The presented column density mapping technique provides a very capable, temperature independent tool for mapping IRDCs over the column density range equivalent to A_V=1-100 mag at a resolution of 2". Using the data provided by the technique, we present the first direct measurement of the relationship between the column density dispersion, \sigma_{N/}, and sonic Mach number, M_s, in molecular clouds. We detect correlation between the variables with about 3-sigma confidence. We derive the relation \sigma_{N/} = (0.047 \pm 0.016) Ms, which is suggestive of the correlation coefficient between the volume density and sonic Mach number, \sigma_{\rho/} = (0.20^{+0.37}_{-0.22}) Ms, in which the quoted uncertainties indicate the 3-sigma range. When coupled with the results of recent numerical works, the existence of the correlation supports the picture of weak correlation between the magnetic field strength and density in molecular clouds (i.e., B ~ \rho^{0.5}).Comment: Accepted for publication in A&A. 29 pages. Download the version with full-resolution figures from http://www.mpia-hd.mpg.de/homes/jtkainul/NexusI/PaperII_arxiv.pdf.g
    corecore