10,835 research outputs found

    Video-rate 3D Particle Tracking with Extended Depth-of-field in Thick Biological Samples

    Get PDF
    We present a single-aperture 3D particle localisation and tracking technique with a vastly increased depth-of-field without compromising optical resolution and throughput. Flow measurements in a FEP capillary and a zebrafish blood vessel are demonstrated experimentally

    Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera)

    Get PDF
    We tested the hypothesis that cytochrome c oxidase subunit 1 (COI) sequences would successfully discriminate recognised species of New Zealand caddisflies. We further examined whether phylogenetic analyses, based on the COI locus, could recover currently recognised superfamilies and suborders. COI sequences were obtained from 105 individuals representing 61 species and all 16 families of Trichoptera known from New Zealand. No sequence sharing was observed between members of different species, and congeneric species showed from 2.3 to 19.5% divergence. Sequence divergence among members of a species was typically low (mean = 0.7%; range 0.0–8.5%), but two species showed intraspecific divergences in excess of 2%. Phylogenetic reconstructions based on COI were largely congruent with previous conclusions based on morphology, although the sequence data did not support placement of the purse-cased caddisflies (Hydroptilidae) within the uncased caddisflies, and, in particular, the Rhyacophiloidea. We conclude that sequence variation in the COI gene locus is an effective tool for the identification of New Zealand caddisfly species, and can provide preliminary phylogenetic inferences. Further research is needed to ascertain the significance of the few instances of high intra-specific divergence and to determine if any instances of sequence sharing will be detected with larger sample sizes

    Rio Grande Designs: Texans\u27 NAFTA Water Claim Against Mexico

    Get PDF
    Our article begins with an analysis of the historical context and key provisions in the 1944 Rivers Treaty between Mexico and the United States. Next, we explain the expropriation claims process established by NAFTA\u27s Chapter 11 and describe the environmental controversy that has arisen over its implementation. We follow with an account of the Texans\u27 NAFTA water claim against Mexico, including an analysis of this claim\u27s relation to the Tulare Lake decision and parallel dispute resolution proceedings at the International and Boundary Waters Commission. At the end of this review, our finding is that the Texans\u27 NAFTA water claim against Mexico is not well-founded from either a legal or a public policy standpoint. This finding is based on a close reading of the operative language in the 1944 Rivers Treaty and NAFTA\u27s Chapter 11; on differences between the domestic law context of the Tulare Lake case and the public international law context of the bi-national Rio Grande dispute; and finally, and on a subsequent 2005 judicial decision in the United States that greatly discredited the Tulare Lake holding

    The evolution of barriers to exploitation: Sometimes the Red Queen can take a break.

    Get PDF
    We propose a general barrier theory as an evolutionary framework for understanding coevolutionary effects of conflicts of interest in natural and human systems. It is generalized from the barrier theory of cancer, which describes how cancer develops through the evasion of mechanisms, that block unregulated cellular reproduction and survival. Barriers are naturally evolved or artificially implemented mechanisms for blocking exploitation; restraints are mechanisms that impede but do not block exploitation. When conflicts of interest arise, selection will favor exploiters that are capable of overcoming barriers and restraints. When barriers are in place, they halt, at least temporarily, coevolutionary arms races (the Red Queen can stop running). Barriers occur in a broad spectrum of interactions characterized by conflicts of interest: barriers to cellular survival (apoptosis) and reproduction (cell cycle arrest) may block a virus from replicating its genome through reproduction of its host cell. Vaccines may completely protect against targeted pathogens. A plant may escape herbivory by evolving defensive chemicals that block herbivory. Obligate mutualisms may evolve when barriers to horizontal transmission favor symbionts that increasingly lose mechanisms that contribute to horizontal transmission. Here, we show how the barrier theory applies across a spectrum of natural and social systems

    How anthropogenic shifts in plant community composition alter soil food webs.

    Get PDF
    There are great concerns about the impacts of soil biodiversity loss on ecosystem functions and services such as nutrient cycling, food production, and carbon storage. A diverse community of soil organisms that together comprise a complex food web mediates such ecosystem functions and services. Recent advances have shed light on the key drivers of soil food web structure, but a conceptual integration is lacking. Here, we explore how human-induced changes in plant community composition influence soil food webs. We present a framework describing the mechanistic underpinnings of how shifts in plant litter and root traits and microclimatic variables impact on the diversity, structure, and function of the soil food web. We then illustrate our framework by discussing how shifts in plant communities resulting from land-use change, climatic change, and species invasions affect soil food web structure and functioning. We argue that unravelling the mechanistic links between plant community trait composition and soil food webs is essential to understanding the cascading effects of anthropogenic shifts in plant communities on ecosystem functions and services
    • 

    corecore