67 research outputs found

    The Cluster Soft Excess: new faces of an old enigma

    Full text link
    Until the advent of XMM-Newton, the cluster soft excess (CSE) was the subject of some controversy due to both data analysis issues and uncertainties with the soft excess emission mechanism. XMM-Newton observations have finally laid to rest any doubts as to the existence of the CSE and have also given tantalising clues as to the nature of its emission mechanism. Here we report on the analysis of XMM-Newton observations of a number of CSE clusters in an attempt to improve the analysis and understanding of the CSE. Included as part of the study is an analysis of the effects of background subtraction, which calls to question the integrity of the claimed O VII line discovery, though not the soft excess itself. We also give details of both thermal and non-thermal fits to the CSE cluster Abell 3112.Comment: Paper presented at the Plenary session of the International Dark Matter Meeting, Edinburgh, Sept. 2004 (to appear in the Proceedings

    On the absence of gravitational lensing of the cosmic microwave background

    Full text link
    The magnification of distant sources by mass clumps at lower (z≤1z \leq 1) redshifts is calculated analytically. The clumps are initially assumed to be galaxy group isothermal spheres with properties inferred from an extensive survey. The average effect, which includes strong lensing, is exactly counteracted by the beam divergence in between clumps (more precisely, the average reciprocal magnification cancels the inverse Dyer-Roeder demagnification). This conclusion is in fact independent of the matter density function within each clump, and remains valid for arbitrary densities of matter and dark energy. When tested against the CMB, a rather large lensing induced {\it dispersion} in the angular size of the primary acoustic peaks of the TT power spectrum is inconsistent with WMAP observations. The situation is unchanged by the use of NFW profiles for the density distribution of groups. Finally, our formulae are applied to an ensemble of NFW mass clumps or isothermal spheres having the parameters of galaxy {\it clusters}. The acoustic peak size dispersion remains unobservably large, and is also excluded by WMAP. For galaxy groups, two possible ways of reconciling with the data are proposed, both exploiting maximally the uncertainties in our knowledge of group properties. The same escape routes are not available in the case of clusters, however, because their properties are well understood. Here we have a more robust conclusion: neither of the widely accepted models are good description of clusters, or important elements of physics responsible for shaping zero curvature space are missing from the standard cosmological model. When all the effects are accrued, it is difficult to understand how WMAP could reveal no evidence whatsoever of lensing by groups and clusters.Comment: ApJ v628, pp. 583-593 (August 1, 2005

    Error correlations in High-Resolution Infrared Radiation Sounder (HIRS) Radiances

    Get PDF
    The High-resolution Infrared Radiation Sounder (HIRS) has been flown on 17 polar-orbiting satellites between the late 1970s and the present day. HIRS applications require accurate characterisation of uncertainties and inter-channel error correlations, which has so far been lacking. Here, we calculate error correlation matrices by accumulating count deviations for sequential sets of calibration measurements, and then correlating deviations between channels (for a fixed view) or views (for a fixed channel). The inter-channel error covariance is usually assumed to be diagonal, but we show that large error correlations, both positive and negative, exist between channels and between views close in time. We show that correlated error exists for all HIRS and that the degree of correlation varies markedly on both short and long timescales. Error correlations in excess of 0.5 are not unusual. Correlations between calibration observations taken sequentially in time arise from periodic error affecting both calibration and Earth counts. A Fourier spectral analysis shows that, for some HIRS instruments, this instrumental effect dominates at some or all spatial frequencies. These findings are significant for application of HIRS data in various applications, and related information will be made available as part of an upcoming Fundamental Climate Data Record covering all HIRS channels and satellites

    Systematic propagation of AVHRR AOD uncertainties—a case study to demonstrate the FIDUCEO approach

    Get PDF
    The AVHRR aerosol optical depth (AOD) is inverted from measured reflectances in the red band using a statistical correlation of surface reflectance with mid-infrared channel reflectances and a modelling climatology of the aerosol type. For such a sensor not specifically designed for AOD retrieval, propagating uncertainties is crucial because the sensitivity of the retrieved AOD to the measured signal varies largely with retrieval conditions (AOD itself, surface brightness, aerosol optical properties/aerosol type, observing geometry). In order to quantify the different contributions to the AOD uncertainties, we have undertaken a thorough analysis of the retrieval operator and its sensitivities to the used input and auxiliary variables. Uncertainties are then propagated from measured reflectances to geophysical retrieved AOD datasets at the super-pixel level and further to gridded daily and monthly products. The propagation uses uncertainty correlations of separate uncertainty contributions from the FIDUCEO easyFCDR level1b products (common fully correlated, independent random, and structured parts) and estimated uncertainty correlation structures of other major effects in the retrieval (surface brightness, aerosol type ensemble, cloud mask). The pixel-level uncertainties are statistically validated against true error estimates versus AERONET ground-based AOD measurements. It is shown that a 10-year time record over Europe compares well to a merged multi-satellite record and that pixel-level uncertainties provide a meaningful representation of error distributions. The study demonstrates the benefits of new recipes for uncertainty characterization from the Horizon-2020 project FIDUCEO (“Fidelity and uncertainty in climate data records from Earth Observations”) and extends them further with recent additions developed within the ESA Climate Change Initiative
    • …
    corecore