35 research outputs found

    Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics.</p> <p>Results</p> <p>We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay.</p> <p>Conclusion</p> <p>We established a comprehensive gene functional association network to model in vitro angiogenesis regulation. The present study provided a proof-of-concept pilot of applying network perturbation analysis to drug phenotypic activity assessment.</p

    Targeting the Transforming Growth Factor-β pathway inhibits human basal-like breast cancer metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming Growth Factor β (TGF-β) plays an important role in tumor invasion and metastasis. We set out to investigate the possible clinical utility of TGF-β antagonists in a human metastatic basal-like breast cancer model. We examined the effects of two types of the TGF-β pathway antagonists (1D11, a mouse monoclonal pan-TGF-β neutralizing antibody and LY2109761, a chemical inhibitor of TGF-β type I and II receptor kinases) on sublines of basal cell-like MDA-MB-231 human breast carcinoma cells that preferentially metastasize to lungs (4175TR, 4173) or bones (SCP2TR, SCP25TR, 2860TR, 3847TR).</p> <p>Results</p> <p>Both 1D11 and LY2109761 effectively blocked TGF-β-induced phosphorylation of receptor-associated Smads in all MDA-MB-231 subclones <it>in vitro</it>. Moreover, both antagonists inhibited TGF-β stimulated <it>in vitro </it>migration and invasiveness of MDA-MB-231 subclones, indicating that these processes are partly driven by TGF-β. In addition, both antagonists significantly reduced the metastatic burden to either lungs or bones <it>in vivo</it>, seemingly independently of intrinsic differences between the individual tumor cell clones. Besides inhibiting metastasis in a tumor cell autonomous manner, the TGF-β antagonists inhibited angiogenesis associated with lung metastases and osteoclast number and activity associated with lytic bone metastases. In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer.</p> <p>Conclusions</p> <p>In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer.</p

    Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex

    Get PDF
    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains

    Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner▿

    No full text
    Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner
    corecore