29,274 research outputs found
Recommended from our members
Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean.
Cyanobacterial diazotrophs are considered to be the most important source of fixed N2 in the open ocean. Biological N2 fixation is catalyzed by the extremely O2-sensitive nitrogenase enzyme. In cyanobacteria without specialized N2-fixing cells (heterocysts), mechanisms such as decoupling photosynthesis from N2 fixation in space or time are involved in protecting nitrogenase from the intracellular O2 evolved by photosynthesis. However, it is not known how cyanobacterial cells limit O2 diffusion across their membranes to protect nitrogenase in ambient O2-saturated surface ocean waters. Here, we explored all known genomes of the major marine cyanobacterial lineages for the presence of hopanoid synthesis genes, since hopanoids are a class of lipids that might act as an O2 diffusion barrier. We found that, whereas all non-heterocyst-forming cyanobacterial diazotrophs had hopanoid synthesis genes, none of the marine Synechococcus, Prochlorococcus (non-N2-fixing), and marine heterocyst-forming (N2-fixing) cyanobacteria did. Finally, we conclude that hopanoid-enriched membranes are a conserved trait in non-heterocyst-forming cyanobacterial diazotrophs that might lower the permeability to extracellular O2 This membrane property coupled with high respiration rates to decrease intracellular O2 concentration may therefore explain how non-heterocyst-forming cyanobacterial diazotrophs can fix N2 in the fully oxic surface ocean
Transcriptional control of behaviour: engrailed knockout changes cockroach escape trajectories
The cerci of the cockroach are covered with identified sensory hairs that detect air movements. The sensory neurons that innervate these hairs synapse with giant interneurons in the terminal ganglion that in turn synapse with interneurons and leg motor neurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed only in the medially born sensory neurons, which suggested that it could work as a positional determinant of sensory neuron identity. Previously, we used double-stranded RNA interference to abolish En expression and found that the axonal arborization and synaptic outputs of an identified En-positive sensory neuron changed so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrated directly that En controls synaptic choice, as well as axon projections. Is escape behavior affected as a result of this miswiring? We showed recently that adult cockroaches keep each escape unpredictable by running along one of a set of preferred escape trajectories (ETs) at fixed angles from the direction of the threatening stimulus. The probability of selecting a particular ET is influenced by wind direction. In this present study, we show that early instar juvenile cockroaches also use those same ETs. En knock-out significantly perturbs the animals' perception of posterior wind, altering the choice of ETs to one more appropriate for anterior wind. This is the first time that it has been shown that knock-out of a transcription factor controlling synaptic connectivity can alter the perception of a directional stimulus
A Heuristic Framework for Next-Generation Models of Geostrophic Convective Turbulence
Many geophysical and astrophysical phenomena are driven by turbulent fluid
dynamics, containing behaviors separated by tens of orders of magnitude in
scale. While direct simulations have made large strides toward understanding
geophysical systems, such models still inhabit modest ranges of the governing
parameters that are difficult to extrapolate to planetary settings. The
canonical problem of rotating Rayleigh-B\'enard convection provides an
alternate approach - isolating the fundamental physics in a reduced setting.
Theoretical studies and asymptotically-reduced simulations in rotating
convection have unveiled a variety of flow behaviors likely relevant to natural
systems, but still inaccessible to direct simulation. In lieu of this, several
new large-scale rotating convection devices have been designed to characterize
such behaviors. It is essential to predict how this potential influx of new
data will mesh with existing results. Surprisingly, a coherent framework of
predictions for extreme rotating convection has not yet been elucidated. In
this study, we combine asymptotic predictions, laboratory and numerical
results, and experimental constraints to build a heuristic framework for
cross-comparison between a broad range of rotating convection studies. We
categorize the diverse field of existing predictions in the context of
asymptotic flow regimes. We then consider the physical constraints that
determine the points of intersection between flow behavior predictions and
experimental accessibility. Applying this framework to several upcoming devices
demonstrates that laboratory studies may soon be able to characterize
geophysically-relevant flow regimes. These new data may transform our
understanding of geophysical and astrophysical turbulence, and the conceptual
framework developed herein should provide the theoretical infrastructure needed
for meaningful discussion of these results.Comment: 36 pages, 8 figures. CHANGES: in revision at Geophysical and
Astrophysical Fluid Dynamic
Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics
We detail the application of bounding volume hierarchies to accelerate
second-virial evaluations for arbitrary complex particles interacting through
hard and soft finite-range potentials. This procedure, based on the
construction of neighbour lists through the combined use of recursive
atom-decomposition techniques and binary overlap search schemes, is shown to
scale sub-logarithmically with particle resolution in the case of molecular
systems with high aspect ratios. Its implementation within an efficient
numerical and theoretical framework based on classical density functional
theory enables us to investigate the cholesteric self-assembly of a wide range
of experimentally-relevant particle models. We illustrate the method through
the determination of the cholesteric behaviour of hard, structurally-resolved
twisted cuboids, and report quantitative evidence of the long-predicted phase
handedness inversion with increasing particle thread angles near the
phenomenological threshold value of . Our results further highlight
the complex relationship between microscopic structure and helical twisting
power in such model systems, which may be attributed to subtle geometric
variations of their chiral excluded-volume manifold
- …