434 research outputs found
Incorporating microclimate into species distribution models
International audienceSpecies distribution models (SDMs) have rapidly evolved into one of the most widely used tools to answer a broad range of ecological questions, from the effects of climate change to challenges for species management. Current SDMs and their predictions under anthropogenic climate change are, however, often based on freeâair or synoptic temperature conditions with a coarse resolution, and thus fail to capture apparent temperature (cf. microclimate) experienced by living organisms within their habitats. Yet microclimate operates as soon as a habitat can be characterized by a vertical component (e.g. forests, mountains, or cities) or by horizontal variation in surface cover. The mismatch between how we usually express climate (cf. coarseâgrained freeâair conditions) and the apparent microclimatic conditions that living organisms experience has only recently been acknowledged in SDMs, yet several studies have already made considerable progress in tackling this problem from different angles. In this review, we summarize the currently available methods to obtain meaningful microclimatic data for use in distribution modelling. We discuss the issue of extent and resolution, and propose an integrated framework using a selection of appropriatelyâplaced sensors in combination with both the detailed measurements of the habitat 3D structure, for example derived from digital elevation models or airborne laser scanning, and the longâterm records of freeâair conditions from weather stations. As such, we can obtain microclimatic data with a relevant spatiotemporal resolution and extent to dynamically model current and future species distributions
Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide
Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of speciesâ evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (âMammalDIETâ). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (âAnimalâ, âMammalâ, âInvertebrateâ, âPlantâ, âSeedâ, âFruitâ, and âLeafâ) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels, but also substantial discrepancies between dietary guilds. MammalDIET provides a comprehensive, unique and freely available dataset on diet preferences for all terrestrial mammals worldwide. It enables broad-scale analyses for specific trophic levels and dietary guilds, and a first assessment of trait conservatism in mammalian diet preferences at a global scale. The digitalization, extrapolation and validation procedures could be transferable to other trait data and taxa
Recommended from our members
Can the Iberian floristic diversity withstand near-future climate change?
We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of speciesâ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change
Resampling alpine herbarium records reveals changes in plant traits over space and time
Acknowledgements This project would not have been possible without the support and enthusiasm of the staff at herbaria around Switzerland (herbaria of University and ETH Zurich, Universities of Basel and Neuchatel, and Museum of Natural History Chur), in particular Hugo Berger, for which we would like to say thanks. We would also like to thank Rachel Imboden, Samuel Stolz, Aino Kulonen, Adrien Gaudard, Louis QuĂŠno, Amy MacFarlane, Ueli Schmid, Lorna Holl and Pirmin Ebner for their invaluable help in the field and in the labPeer reviewedPublisher PD
Biogeophysical controls on soil-atmosphere thermal differences : implications on warming Arctic ecosystems
Soil temperature (ST) has a key role in Arctic ecosystem functioning and global environmental change. However, soil thermal conditions do not necessarily follow synoptic temperature variations. This is because local biogeophysical processes can lead to a pronounced soil-atmosphere thermal offset (Delta T) while altering the coupling (beta Tau) between ST and ambient air temperature (AAT). Here, we aim to uncover the spatiotemporal variation in these parameters and identify their main environmental drivers. By deploying a unique network of 322 temperature loggers and surveying biogeophysical processes across an Arctic landscape, we found that the spatial variation in Delta T during the AAT 0 period, Delta T was controlled by soil characteristics, vegetation and solar radiation (Delta T = -0.6 degrees C +/- 1.0 degrees C). Importantly, Delta T was not constant throughout the seasons reflecting the influence of beta Tau on the rate of local soil warming being stronger after (mean beta Tau = 0.8 +/- 0.1) than before (beta Tau = 0.2 +/- 0.2) snowmelt. Our results highlight the need for continuous microclimatic and local environmental monitoring, and suggest a potential for large buffering and non-uniform warming of snow-dominated Arctic ecosystems under projected temperature increase.Peer reviewe
Mammal predator and prey species richness are strongly linked at macroscales
Predator-prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey bottom-up or predator top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence have been accounted for, (2) predator-prey richness associations vary among biogeographic regions, and (3) body size influences large-scale covariation between predators and prey. SEMs including only productivity, climate, and human factors explained a high proportion of variance in prey richness (R2 = 0.56) but considerably less in predator richness (R2 = 0.13). Adding predator-to-prey or prey-topredator paths strongly increased the explained variance in both cases (prey R2 = 0.79, predator R2 = 0.57), suggesting that predator-prey interactions play an important role in driving global diversity gradients. Prey bottom-up effects prevailed over productivity, climate, and human influence to explain predator richness, whereas productivity and climate were more important than predator top-down effects for explaining prey richness, although predator top-down effects were still significant. Global predator-prey associations were not reproduced in all regions, indicating that distinct paleoclimate and evolutionary histories (Africa and Australia) may alter species interactions across trophic levels. Stronger crosstrophic- level associations were recorded within categories of similar body size (e.g., large prey to large predators) than between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large-bodied mammals. Overall, our results support the idea that trophic interactions can be important drivers of large-scale species richness gradients in combination with environmental effects. ĂŠ 2013 by the Ecological Society of America
The Enginering Important Components of Jatibarang Dam, Semarang, Indonesia
Semarang City suffers from inundation caused by storm rainfall and high tide due to its low-lying topography along the coastal area. The Jatibarang Dam purpose is to develop a new source of water for Semarang City and to control the flood discharge of West Floodway as the biggest river in Semarang. Also, it has been recognized that the combination of the Jatibarang Dam and the rivers improvement is the most feasible flood control measure. The flood control scheme will be established to protect Semarang City from the 50-year return period flood and the water resources development scheme is planned to assure the water to the 10-year draught. The design flooding will be controlled by the Jatibarang Dam. About 270 m3/s of 50-year return period flood at Jatibarang dam will be controlled by the dam and the discharge from dam will be reduced to 100 m3/s. The Engineering important components of the Dam are diversion tunnel, dam structure, spillway and conduit of power works.Each component will be elaborated in this article
Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient
Background: The importance of intraspecific trait variation (ITV) is increasingly acknowledged among plant ecologists. However, our understanding of what drives ITV between individual plants (ITVBI) at the population level is still limited. Contrasting theoretical hypotheses state that ITVBI can be either suppressed (stress-reduced plasticity hypothesis) or enhanced (stress-induced variability hypothesis) under high abiotic stress. Similarly, other hypotheses predict either suppressed (niche packing hypothesis) or enhanced ITVBI (individual variation hypothesis) under high niche packing in species rich communities. In this study we assess the relative effects of both abiotic and biotic niche effects on ITVBI of four functional traits (leaf area, specific leaf area, plant height and seed mass), for three herbaceous plant species across a 2300 km long gradient in Europe. The study species were the slow colonizing Anemone nemorosa, a species with intermediate colonization rates, Milium effusum, and the fast colonizing, non-native Impatiens glandulifera.
Results: Climatic stress consistently increased ITVBI across species and traits. Soil nutrient stress, on the other hand, reduced ITVBI for A. nemorosa and I. glandulifera, but had a reversed effect for M. effusum. We furthermore observed a reversed effect of high niche packing on ITVBI for the fast colonizing non-native I. glandulifera (increased ITVBI), as compared to the slow colonizing native A. nemorosa and M. effusum (reduced ITVBI). Additionally, ITVBI in the fast colonizing species tended to be highest for the vegetative traits plant height and leaf area, but lowest for the measured generative trait seed mass.
Conclusions: This study shows that stress can both reduce and increase ITVBI, seemingly supporting both the stress-reduced plasticity and stress-induced variability hypotheses. Similarly, niche packing effects on ITVBI supported both the niche packing hypothesis and the individual variation hypothesis. These results clearly illustrates the importance of simultaneously evaluating both abiotic and biotic factors on ITVBI. This study adds to the growing realization that within-population trait variation should not be ignored and can provide valuable ecological insights
Climate change threatens the most biodiverse regions of Mexico
International audienceClimate change threatens Earth's biodiversity, although its impacts are variable and depend on the capacity of species and ecosystems to cope with the magnitude and speed of change. Natural protected areas (NPAs) constitute potential refugia for species' persistence and for sustaining the provisioning of ecosystem services. Biosphere reserves are NPAs that are less altered by human actions and provide habitat to endemic, threatened or endangered species. Here, we aim to evaluate the threat imposed by climate change on the network of biosphere reserves in Mexico. Focusing on five bioclimatic variables, we computed the climatic space â measured as an n-dimensional hypervolume â of 40 NPAs. Increases in temperature are predicted for all NPAs by 2050, whereas decreases in annual rainfall are predicted for 30 NPAs. By 2050, 31 NPAs that provide habitat to 22,866 recorded species are predicted to lose 100% of their baseline climatic space, shifting to completely novel climates. On average, the other nine NPAs are predicted to lose 55.7% (SD = 26.7%) of their baseline climatic space, while 54.5% (SD = 32.5%) of the future climatic space will be novel. Seventeen NPAs may lose climate variability (homogenization), decreasing species' niches. The extent to which non-analogue conditions will remain within the tolerance of species and ecosystems is currently unknown. Finally, we propose a vulnerability index to categorise NPAs based on their loss of existing climatic space, total geographic area, species richness, and uniqueness of species composition, finding los Tuxtlas and Tiburon Ballena as the most and least vulnerable NPAs, respectively
Bioclimatic atlas of the terrestrial Arctic
The Arctic is the region on Earth that is warming at the fastest rate. In addition to rising means of temperature-related variables, Arctic ecosystems are affected by increasingly frequent extreme weather events causing disturbance to Arctic ecosystems. Here, we introduce a new dataset of bioclimatic indices relevant for investigating the changes of Arctic terrestrial ecosystems. The dataset, called ARCLIM, consists of several climate and event-type indices for the northern high-latitude land areas > 45 degrees N. The indices are calculated from the hourly ERA5-Land reanalysis data for 1950-2021 in a spatial grid of 0.1 degree (similar to 9 km) resolution. The indices are provided in three subsets: (1) the annual values during 1950-2021; (2) the average conditions for the 1991-2020 climatology; and (3) temporal trends over 1951-2021. The 72-year time series of various climate and event-type indices draws a comprehensive picture of the occurrence and recurrence of extreme weather events and climate variability of the changing Arctic bioclimate.Peer reviewe
- âŚ