12 research outputs found

    PPM demodulation: On approaching fundamental limits of optical communications

    Full text link
    We consider the problem of demodulating M-ary optical PPM (pulse-position modulation) waveforms, and propose a structured receiver whose mean probability of symbol error is smaller than all known receivers, and approaches the quantum limit. The receiver uses photodetection coupled with optimized phase-coherent optical feedback control and a phase-sensitive parametric amplifier. We present a general framework of optical receivers known as the conditional pulse nulling receiver, and present new results on ultimate limits and achievable regions of spectral versus photon efficiency tradeoffs for the single-spatial-mode pure-loss optical communication channel.Comment: 5 pages, 6 figures, IEEE ISIT, Austin, TX (2010

    Harvesting Planck radiation for free-space optical communications in the LWIR band

    Full text link
    We demonstrate a free-space optical communication link with an optical transmitter that harvests naturally occurring Planck radiation from a warm body and modulates the emitted intensity. The transmitter exploits an electro-thermo-optic effect in a multilayer graphene device that electrically controls the surface emissivity of the device resulting in control of the intensity of the emitted Planck radiation. We design an amplitude-modulated optical communication scheme and provide a link budget for communications data rate and range based on our experimental electro-optic characterization of the transmitter. Finally, we present an experimental demonstration achieving error-free communications at 100 bits per second over laboratory scales

    Optical codeword demodulation with error rates below standard quantum limit using a conditional nulling receiver

    Full text link
    The quantum states of two laser pulses---coherent states---are never mutually orthogonal, making perfect discrimination impossible. Even so, coherent states can achieve the ultimate quantum limit for capacity of a classical channel, the Holevo capacity. Attaining this requires the receiver to make joint-detection measurements on long codeword blocks, optical implementations of which remain unknown. We report the first experimental demonstration of a joint-detection receiver, demodulating quaternary pulse-position-modulation (PPM) codewords at a word error rate of up to 40% (2.2 dB) below that attained with direct-detection, the largest error-rate improvement over the standard quantum limit reported to date. This is accomplished with a conditional nulling receiver, which uses optimized-amplitude coherent pulse nulling, single photon detection and quantum feedforward. We further show how this translates into coding complexity improvements for practical PPM systems, such as in deep-space communication. We anticipate our experiment to motivate future work towards building Holevo-capacity-achieving joint-detection receivers.Comment: 6 pages, 4 figure

    Quantum key distribution with high-speed superconducting single-photon detectors

    No full text
    corecore