1,255 research outputs found

    Decoherence due to XPM-assisted Raman amplification for polarization or wavelength offset pulses in all-normal dispersion supercontinuum generation

    Get PDF
    We report the importance of cross-phase modulation (XPM) on the coherence of a low-energy probe pulse co-propagating with a high-energy pump pulse that generates incoherent supercontinuum in all-normal dispersion (ANDi) fiber due to Raman amplification of quantum noise. By investigating numerous fiber and pulse parameters, we show consistently that for weak probe pulses, the XPM from the pump is the dominant influence on the degradation of the probe coherence. We show that the faster decoherence at the pump leading edge means that the probe coherence is reduced more significantly when the probe has a higher group velocity, i.e., when an orthogonally polarized probe is aligned to the fast (lower refractive index) axis of the fiber or when a co-polarized probe has a longer central wavelength. Simulations show that this effect occurs for both polarization-maintaining (PM) and non-PM ANDi fibers and can result in a probe decoherence rate that is higher than that of the pump. These previously unreported results extend our earlier scalar simulations showing incoherent supercontinuum within a single pulse

    Effect of reheating on predictions following multiple-field inflation

    Full text link
    We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semi-analytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on N\mathcal{N}-quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.Comment: Published in PRD. 4 figures, 10 page

    Fiber absorption measurement errors resulting from re-emission of radiation

    No full text
    We show that errors in the absorption measured in rare-earth-doped fibers can exceed 50% and severely distort the spectral shape. This is a result of re-emission in fibers with overlapping absorption and emission spectra

    Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation

    Get PDF
    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits

    Anterior knee pain from the evolutionary perspective

    Get PDF
    Background This paper describes the evolutionary changes in morphology and orientation of the PFJ using species present through our ancestry over 340 million years. Methods 37 specimens from the Devonian period to modern day were scanned using a 64-slice CT scanner. 3D geometries were created following routine segmentation and anatomical measurements taken from standardised bony landmarks. Results Findings are described according to gait strategy and age. The adoption of an upright bi-pedal stance caused a dramatic change in the loading of the PFJ which has subsequently led to changes in the arrangement of the PFJ. From Devonian to Miocene periods, our sprawling and climbing ancestors possessed a broad knee with a shallow, centrally located trochlea. A more rounded knee was present from the Paleolithic period onwards in erect and bipedal gait types (aspect ratio 0.93 vs 1.2 in late Devonian), with the PFJ being placed lateral to the midline compared to the medial position in quadrapeds. The depth of the trochlea groove was maximal in the Miocene period of the African ground apes with associated acute sulcus angles in Gorilla (117°) becoming more flattened towards the modern human (138°). Conclusions The evolving bipedal gait lead to anteriorisation of the patellofemoral joint, flattening of the trochlea sulcus, in a more lateral, dislocation prone arrangement. Ancestral developments might help explain the variety of presentations of anterior knee pain and patellofemoral instability

    Noise-related polarization dynamics for femto and picosecond pulses in normal dispersion fibers

    Get PDF
    We report how the complex intra-pulse polarization dynamics of coherent optical wavebreaking and incoherent Raman amplification processes in all-normal dispersion (ANDi) fibers vary for femto and picosecond pump pulses. Using high temporal resolution vector supercontinuum simulations, we identify deterministic polarization dynamics caused by wavebreaking and self-phase modulation for femtosecond pulses and quasi-chaotic polarization evolution driven by Raman amplification of quantum noise for picosecond pulses. In contrast to cross-phase modulation instability, the Raman-based polarization noise has no power threshold and is reduced by aligning the higher energy polarization component with the lower index axis of the fiber. The degree of polarization stability is quantified using new time domain parameters that build on the spectrally averaged degree of coherence used in supercontinuum research to quantify the output spectral stability. We show that the spectral coherence is intrinsically linked to polarization noise, and that the noise will occur in both polarization maintaining (PM) and non-PM fibers, spanning a broad range of pulse energies, durations, and fiber birefringence values. This analysis provides an in-depth understanding of the nonlinear polarization dynamics associated with coherent and incoherent propagation in ANDi fibers

    Dispersed Repetitive DNA Has Spread to New Genomes Since Polyploid Formation in Cotton

    Get PDF
    Polyploid formation has played a major role in the evolution of many plant and animal genomes; however, surprisingly little is known regarding the subsequent evolution of DNA sequences that become newly united in a common nucleus. Of particular interest is the repetitive DNA fraction, which accounts for most nuclear DNA in higher plants and animals and which can be remarkably different, even in closely related taxa. In one recently formed polyploid, cotton (Gossypium barbadense L.; AD genome), 83 non-cross-hybridizing DNA clones contain dispersed repeats that are estimated to comprise about 24% of the nuclear DNA. Among these, 64 (77%) are largely restricted to diploid taxa containing the larger A genome and collectively account for about half of the difference in DNA content between Old World (A) and New World (D) diploid ancestors of cultivated AD tetraploid cotton. In tetraploid cotton, FISH analysis showed that some A-genome dispersed repeats appear to have spread to D-genome chromosomes. Such spread may also account for the finding that one, and only one, D-genome diploid cotton, Gossypium gossypioides, contains moderate levels of (otherwise) A-genome-specific repeats in addition to normal levels of D-genome repeats. The discovery of A-genome repeats in G. gossypioides adds genome-wide support to a suggestion previously based on evidence from only a single genetic locus that this species may be either the closest living descendant of the New World cotton ancestor, or an adulterated relic of polyploid formation. Spread of dispersed repeats in the early stages of polyploid formation may provide a tag to identify diploid progenitors of a polyploid. Although most repetitive clones do not correspond to known DNA sequences, 4 correspond to known transposons, most contain internal subrepeats, and at least 12 (including 2 of the possible transposons) hybridize to mRNAs expressed at readily discernible levels in cotton seedlings, implicating transposition as one possible mechanism of spread. Integration of molecular, phylogenetic, and cytogenetic analysis of dispersed repetitive DNA may shed new light on evolution of other polyploid genomes, as well as providing valuable landmarks for many aspects of genome analysis

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations

    Single Versus Multi-Center Surgeons\u27 Risk-Adjusted Mitral Valve Repair Procedural Outcomes

    Get PDF
    The purpose of this study is to explore strategies to improve mitral valve repair (MVr) outcomes. This research explores postoperative outcomes of patients undergoing MVr surgery by single center surgeons versus patients of multicenter surgeons. Specific outcomes of interest include 30-day operative mortality, major operative complications (e.g., deep sternal wound infection, permanent stroke, renal dysfunction requiring dialysis, reoperation, and prolonged ventilation), length of stay, and 30-day readmissions. In brief, the serisk-adjusted outcome rates for surgeons that perform mitral valve repair procedures will be compared for surgeons that operate at a single center [i.e. SC surgeons] versus multiple centers [i.e. MC surgeons]. The overarching study hypothesis is: H(0) There will be no difference in the risk-adjusted outcome rates between surgeons that operate at a single center [i.e. SC surgeons] versus multiple centers [i.e. MC surgeons]. Based on prior research, however, it is anticipated that single center surgeons may have superior outcomes compared to multi-center surgeons

    Humans are the most significant global geomorphological driving force of the 21st Century

    Get PDF
    The transformation of the Earth’s land surface by mineral extraction and construction is on a scale greater than natural erosive terrestrial geological processes. Mineral extraction statistics can be used as a proxy to measure the size of the total anthropogenic global sediment flux related to mineral extraction and construction. It is demonstrated that the annual direct anthropogenic contribution to the global production of sediment in 2015 was conservatively some 316 Gt (150 km3), a figure more than 24 times greater than the sediment supplied annually by the world’s major rivers to the oceans. The major long-term acceleration in anthropogenic sediment flux started just after the Second World War and anthropogenic sediment flux overtook natural fluvial sediment flux in the mid-1950s. Humans are now the major global geological driving force and an important component of earth system processes in landscape evolution. The changing magnitude of anthropogenic sediments and landforms over time are significant factors in the characterisation of the proposed new epoch of geological time - the Anthropocene
    • …
    corecore