66 research outputs found
A BAC-based physical map of the apple genome
AbstractGenome-wide physical mapping is an essential step toward investigating the genetic basis of complex traits as well as pursuing genomics research of virtually all plant and animal species. We have constructed a physical map of the apple genome from a total of 74,281 BAC clones representing ∼10.5× haploid genome equivalents. The physical map consists of 2702 contigs, and it is estimated to span ∼927 Mb in physical length. The reliability of contig assembly was evaluated by several methods, including assembling contigs using variable stringencies, assembling contigs using fingerprints from individual libraries, checking consensus maps of contigs, and using DNA markers. Altogether, the results demonstrated that the contigs were properly assembled. The apple genome-wide BAC-based physical map represents the first draft genome sequence not only for any member of the large Rosaceae family, but also for all tree species. This map will play a critical role in advanced genomics research for apple and other tree species, including marker development in targeted chromosome regions, fine-mapping and isolation of genes/QTL, conducting comparative genomics analyses of plant chromosomes, and large-scale genomics sequencing
Fine-mapping of a QTL influencing pork tenderness on porcine chromosome 2
<p>Abstract</p> <p>Background</p> <p>In a previous study, a quantitative trait locus (QTL) exhibiting large effects on both Instron shear force and taste panel tenderness was detected within the Illinois Meat Quality Pedigree (IMQP). This QTL mapped to the q arm of porcine chromosome 2 (SSC2q). Comparative analysis of SSC2q indicates that it is orthologous to a segment of human chromosome 5 (HSA5) containing a strong positional candidate gene, calpastatin (<it>CAST</it>). <it>CAST </it>polymorphisms have recently been shown to be associated with meat quality characteristics; however, the possible involvement of other genes and/or molecular variation in this region cannot be excluded, thus requiring fine-mapping of the QTL.</p> <p>Results</p> <p>Recent advances in porcine genome resources, including high-resolution radiation hybrid and bacterial artificial chromosome (BAC) physical maps, were utilized for development of novel informative markers. Marker density in the ~30-Mb region surrounding the most likely QTL position was increased by addition of eighteen new microsatellite markers, including nine publicly-available and nine novel markers. Two newly-developed markers were derived from a porcine BAC clone containing the <it>CAST </it>gene. Refinement of the QTL position was achieved through linkage and haplotype analyses. Within-family linkage analyses revealed at least two families segregating for a highly-significant QTL in strong positional agreement with <it>CAST </it>markers. A combined analysis of these two families yielded QTL intervals of 36 cM and 7 cM for Instron shear force and taste panel tenderness, respectively, while haplotype analyses suggested further refinement to a 1.8 cM interval containing <it>CAST </it>markers. The presence of additional tenderness QTL on SSC2q was also suggested.</p> <p>Conclusion</p> <p>These results reinforce <it>CAST </it>as a strong positional candidate. Further analysis of <it>CAST </it>molecular variation within the IMQP F<sub>1 </sub>boars should enhance understanding of the molecular basis of pork tenderness, and thus allow for genetic improvement of pork products. Furthermore, additional resources have been generated for the targeted investigation of other putative QTL on SSC2q, which may lead to further advancements in pork quality.</p
Genomic organization and evolution of the ULBP genes in cattle
BACKGROUND: The cattle UL16-binding protein 1 (ULBP1) and ULBP2 genes encode members of the MHC Class I superfamily that have homology to the human ULBP genes. Human ULBP1 and ULBP2 interact with the NKG2D receptor to activate effector cells in the immune system. The human cytomegalovirus UL16 protein is known to disrupt the ULBP-NKG2D interaction, thereby subverting natural killer cell-mediated responses. Previous Southern blotting experiments identified evidence of increased ULBP copy number within the genomes of ruminant artiodactyls. On the basis of these observations we hypothesized that the cattle ULBPs evolved by duplication and sequence divergence to produce a sufficient number and diversity of ULBP molecules to deliver an immune activation signal in the presence of immunogenic peptides. Given the importance of the ULBPs in antiviral immunity in other species, our goal was to determine the copy number and genomic organization of the ULBP genes in the cattle genome. RESULTS: Sequencing of cattle bacterial artificial chromosome genomic inserts resulted in the identification of 30 cattle ULBP loci existing in two gene clusters. Evidence of extensive segmental duplication and approximately 14 Kbp of novel repetitive sequences were identified within the major cluster. Ten ULBPs are predicted to be expressed at the cell surface. Substitution analysis revealed 11 outwardly directed residues in the predicted extracellular domains that show evidence of positive Darwinian selection. These positively selected residues have only one residue that overlaps with those proposed to interact with NKG2D, thus suggesting the interaction with molecules other than NKG2D. CONCLUSION: The ULBP loci in the cattle genome apparently arose by gene duplication and subsequent sequence divergence. Substitution analysis of the ULBP proteins provided convincing evidence for positive selection on extracellular residues that may interact with peptide ligands. These results support our hypothesis that the cattle ULBPs evolved under adaptive diversifying selection to avoid interaction with a UL16-like molecule whilst preserving the NKG2D binding site. The large number of ULBPs in cattle, their extensive diversification, and the high prevalence of bovine herpesvirus infections make this gene family a compelling target for studies of antiviral immunity
A KRT71 Loss-of-Function Variant Results in Inner Root Sheath Dysplasia and Recessive Congenital Hypotrichosis of Hereford Cattle
Genodermatoses, such as heritable skin disorders, mostly represent Mendelian conditions. Congenital hypotrichosis (HY) characterize a condition of being born with less hair than normal. The purpose of this study was to characterize the clinicopathological phenotype of a breed-specific non-syndromic form of HY in Hereford cattle and to identify the causative genetic variant for this recessive disorder. Affected calves showed a very short, fine, wooly, kinky and curly coat over all parts of the body, with a major expression in the ears, the inner part of the limbs, and in the thoracic-abdominal region. Histopathology showed a severely altered morphology of the inner root sheath (IRS) of the hair follicle with abnormal Huxley and Henle’s layers and severely dysplastic hair shafts. A genome-wide association study revealed an association signal on chromosome 5. Homozygosity mapping in a subset of cases refined the HY locus to a 690 kb critical interval encompassing a cluster of type II keratin encoding genes. Protein-coding exons of six positional candidate genes with known hair or hair follicle function were re-sequenced. This revealed a protein-changing variant in the KRT71 gene that encodes a type II keratin specifically expressed in the IRS of the hair follicle (c.281delTGTGCCCA; p.Met94AsnfsX14). Besides obvious phenocopies, a perfect concordance between the presence of this most likely pathogenic loss-of-function variant located in the head domain of KRT71 and the HY phenotype was found. This recessive KRT71-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002114-9913)
Creating Porcine Biomedical Models Through Recombineering
Recent advances in genomics provide genetic information from humans and other
mammals (mouse, rat, dog and primates) traditionally used as models as well
as new candidates (pigs and cattle). In addition, linked enabling technologies,
such as transgenesis and animal cloning, provide innovative ways to design and
perform experiments to dissect complex biological systems. Exploitation of genomic
information overcomes the traditional need to choose naturally occurring models.
Thus, investigators can utilize emerging genomic knowledge and tools to create
relevant animal models. This approach is referred to as reverse genetics. In contrast
to ‘forward genetics’, in which gene(s) responsible for a particular phenotype
are identified by positional cloning (phenotype to genotype), the ‘reverse genetics’
approach determines the function of a gene and predicts the phenotype of a
cell, tissue, or organism (genotype to phenotype). The convergence of classical
and reverse genetics, along with genomics, provides a working definition of a
‘genetic model’ organism (3). The recent construction of phenotypic maps defining
quantitative trait loci (QTL) in various domesticated species provides insights into
how allelic variations contribute to phenotypic diversity. Targeted chromosomal
regions are characterized by the construction of bacterial artificial chromosome
(BAC) contigs to isolate and characterize genes contributing towards phenotypic
variation. Recombineering provides a powerful methodology to harvest genetic
information responsible for phenotype. Linking recombineering with gene-targeted
homologous recombination, coupled with nuclear transfer (NT) technology can
provide ‘clones’ of genetically modified animals
Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets
<p>Abstract</p> <p>Background</p> <p>To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology.</p> <p>Results</p> <p>Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, <it>B2M</it>, <it>TAP1 </it>and <it>TAPBP</it>) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (<it>NFκBIA</it>; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (<it>TOLLIP</it>), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (<it>GATA1</it>) is consistent with the maintenance of intestinal homeostasis.</p> <p>Conclusion</p> <p>This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.</p
An integrated RH map of porcine chromosome 10
BACKGROUND: Whole genome radiation hybrid (WG-RH) maps serve as "scaffolds" to significantly improve the orientation of small bacterial artificial chromosome (BAC) contigs, order genes within the contigs and assist assembly of a sequence-ready map for virtually any species. Here, we report the construction of a porcine: human comparative map for pig (Sus scrofa) chromosome 10 (SSC10) using the IMNpRH2(12,000-rad )porcine WG-RH panel, integrated with the IMpRH(7000-rad )WG-RH, genetic and BAC fingerprinted contig (FPC) maps. RESULTS: Map vectors from the IMNpRH2(12,000-rad )and IMpRH(7,000-rad )panels were merged to construct parallel framework (FW) maps, within which FW markers common to both panels have an identical order. This strategy reduced map discrepancies between the two panels and significantly improved map accuracy. A total of 216 markers, including 50 microsatellites (MSs), 97 genes and ESTs, and 69 BAC end sequences (BESs), were ordered within two linkage groups at two point (2 pt) LOD score of 8. One linkage group covers SSC10p with accumulated map distances of 738.2 cR(7,000 )and 1814.5 cR(12,000), respectively. The second group covers SSC10q at map distances of 1336.9 cR(7,000 )and 3353.6 cR(12,000), yielding an overall average map resolution of 16.4 kb/cR(12,000 )or 393.5 kb per marker on SSC10. This represents a ~2.5-fold increase in map resolution over the IMpRH(7,000-rad )panel. Based on 127 porcine markers that have homologous sequences in the human genome, a detailed comparative map between SSC10 and human (Homo sapiens) chromosome (HSA) 1, 9 and 10 was built. CONCLUSION: This initial comparative RH map of SSC10 refines the syntenic regions between SSC10 and HSA1, 9 and 10. It integrates the IMNpRH2(12,000-rad )and IMpRH(7,000-rad), genetic and BAC FPC maps and provides a scaffold to close potential gaps between contigs prior to genome sequencing and assembly. This map is also useful in fine mapping of QTLs on SSC10
Swine Genome Sequencing Consortium (SGSC): A Strategic Roadmap for Sequencing The Pig Genome
The Swine Genome Sequencing Consortium (SGSC) was formed in September
2003 by academic, government and industry representatives to provide international
coordination for sequencing the pig genome. The SGSC’s mission is to advance
biomedical research for animal production and health by the development of DNAbased
tools and products resulting from the sequencing of the swine genome. During
the past 2 years, the SGSC has met bi-annually to develop a strategic roadmap for
creating the required scientific resources, to integrate existing physical maps, and to
create a sequencing strategy that captured international participation and a broad
funding base. During the past year, SGSC members have integrated their respective
physical mapping data with the goal of creating a minimal tiling path (MTP)
that will be used as the sequencing template. During the recent Plant and Animal
Genome meeting (January 16, 2005 San Diego, CA), presentations demonstrated that
a human–pig comparative map has been completed, BAC fingerprint contigs (FPC)
for each of the autosomes and X chromosome have been constructed and that BAC
end-sequencing has permitted, through BLAST analysis and RH-mapping, anchoring
of the contigs. Thus, significant progress has been made towards the creation of a
MTP. In addition, whole-genome (WG) shotgun libraries have been constructed and
are currently being sequenced in various laboratories around the globe. Thus, a
hybrid sequencing approach in which 3x coverage of BACs comprising the MTP
and 3x of the WG-shotgun libraries will be used to develop a draft 6x coverage of
the pig genome
Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ∼421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ∼24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple
- …