106 research outputs found
How to Build Simple Models of PEM Fuel Cells for Fast Computation
Hydrogen is one of the leading candidates in the search for an alternative to fossil hydrocarbon fuels. The spread of these technologies requires a real-time control of generator performances. Artificial intelligence (AI) and mathematic tools can make smarter the smart grid. The electrochemical modeling can be coupled successfully with artificial intelligent approach, if these models can be quickly computed with a large numerical stability. This chapter shows a methodology to build this kind of modeling work. Thanks to a simplified but physically reasonable model of PEM fuel cell, we will show that the reactant access (oxygen) or water management (a product of the reaction) and the reaction rate can be easily described with low computing time consuming. In addition, the artificial neural network could be trained with a reduced amount of data generated by these cell models
Solid Oxide Steam Electrolyzer: Gas Diffusion Steers the Design of Electrodes
The hydrogen production by SOECs coupled with renewable energy sources is a promising route for the sustainability hydrogen economy. Multiphysics computing simulations appear to be the most efficient approaches to analyze the coupled mechanisms of SOEC operation. Using a relevant model, it is possible to predict the electrical behavior of solid oxide electrodes considering the current collector design. The influences of diffusion and grain diameter on cell performances can be investigated through 2D simulations, currentâvoltage characteristics, and current source distribution through electrodes. The simulation results emphasize that diffusion is linked to a relocation of the reaction away from the interface electrolyte/electrode, in the volume of the cathode. Furthermore, the current collector proves itself to be a great obstacle to gas access, inducing underneath it a shortage of steam. Inducing gradients of grain diameters in both anode and cathode drives the current sources to occur close to the electrode/electrolyte interface, thus decreasing ohmic losses and facilitating gas access. This approach shows the crucial importance of cathode microstructure as this electrode controls the cell response
.PROCEDE DE PURIFICATION D'UN GAZ PORTEUR
L'invention concerne un procĂ©dĂ© de purification d'un gaz porteur qui comprend des impuretĂ©s oxygĂ©nĂ©es dans un premier degrĂ© d'oxydation, le procĂ©dĂ© de purification comprenant la circulation, avantageusement ininterrompue, du gaz porteur au travers et selon une direction XX' d'un filtre (200), le filtre (200) Ă©tant fait d'un matĂ©riau piĂšge Ă oxygĂšne qui prĂ©sente un potentiel d'oxydorĂ©duction E°, et dont une premiĂšre portion (210a) est dans un Ă©tat d'oxydorĂ©duction rĂ©duit et au sein de laquelle les impuretĂ©s oxygĂ©nĂ©es sont piĂ©gĂ©es et/ou passent du premier degrĂ© d'oxydation Ă un second degrĂ© d'oxydation, le procĂ©dĂ© comprenant en outre l'application au filtre (200) d'un potentiel Ă©lectrique ÎV supĂ©rieur, en valeur absolue, au potentiel d'oxydorĂ©duction E° lors d'un cycle de purification principal CP
Coupling RTD and EIS modelling to characterize operating non-uniformities on PEM cathodes
International audienceLarge PEM cells will be used in future proton exchange membrane fuel cell (PEMFC) power plants and appropriate tools are therefore be needed to study their behaviour. One approach to understanding single cell behaviour involves using mathematical models. The numerous techniques used in this work to describe PEM electrode behaviour require different scientific disciplines: chemical engineering and electrochemistry. This study proposes combining residence time distribution (RTD) and electrochemical impedance spectroscopy (EIS). The investigation focuses on cathodic DC and AC responses where over-voltage is critical. Results demonstrate that although gas distribution does not cause additional loops on impedance diagrams, it is strongly related to both the shape and amplitude of these diagrams. The simulations have drawn attention to operating conditions that can threaten the life of the PEM cell: under these setting points EIS method is not sufficient to detect this risk
.PROCEDE DE PURIFICATION D'UN GAZ PORTEUR
L'invention concerne un procĂ©dĂ© de purification d'un gaz porteur qui comprend des impuretĂ©s oxygĂ©nĂ©es dans un premier degrĂ© d'oxydation, le procĂ©dĂ© de purification comprenant la circulation, avantageusement ininterrompue, du gaz porteur au travers et selon une direction XX' d'un filtre (200), le filtre (200) Ă©tant fait d'un matĂ©riau piĂšge Ă oxygĂšne qui prĂ©sente un potentiel d'oxydorĂ©duction E°, et dont une premiĂšre portion (210a) est dans un Ă©tat d'oxydorĂ©duction rĂ©duit et au sein de laquelle les impuretĂ©s oxygĂ©nĂ©es sont piĂ©gĂ©es et/ou passent du premier degrĂ© d'oxydation Ă un second degrĂ© d'oxydation, le procĂ©dĂ© comprenant en outre l'application au filtre (200) d'un potentiel Ă©lectrique ÎV supĂ©rieur, en valeur absolue, au potentiel d'oxydorĂ©duction E° lors d'un cycle de purification principal CP
: Etude des aspects thermodynamiques et cinétiques du couplage ; l'électrolyseur fournit le dihydrogÚne à la pile à combustible
Le BupUn Ă©lectrolyseur a Ă©tĂ© utilisĂ© pour alimenter une pile Ă combustible en dihydrogĂšne. Les deux dispositifs possĂšdent comme Ă©lectrolyte une membrane Ă©changeuse de proton, appelĂ©e communĂ©ment PEM (Proton exchange membrane). Dans un premier temps, les auteurs abordent lâĂ©tude de lâĂ©lectrolyseur : vĂ©rification de la loi de Faraday, discussion sur le choix des matĂ©riaux dâĂ©lectrode en fonction de la cinĂ©tique des rĂ©actions Ă©lectrochimiques. Dans une seconde partie, le comportement de la pile est analysĂ© Ă partir des caractĂ©ristiques courant-tension : suivant le courant dĂ©bitĂ©, les diffĂ©rentes Ă©tapes limitant la vitesse des rĂ©actions Ă©lectrochimiques sont mises en Ă©vidence. Ces manipulations peuvent faire lâobjet dâune ou plusieurs sĂ©ances de travaux pratiques correspondant Ă un niveau de premier ou second cycle universitaire. Elles permettent de se familiariser avec les concepts de base de lâĂ©lectrochimie et montrent la place importante de lâĂ©lectrochimie dans un secteur en pleine mutation, celui de lâĂ©nergie
Modeling of electrochemically generated bubbly flow under buoyancy-driven and forced convection
International audienceThis work is devoted to the modeling of two phase flows arising in typical electrolysis devices. A numerical mixture model is used in order to resolve the two dimensional bubble plumes evolving along the electrodes. Plumes thickness sensitivity is studied for various parameters, such as bubble diameter, elec-trolyte viscosity, electrochemical cell geometry and current density. Using thermal buoyancy driven flow analogy, a dimensionless Rayleigh-like number Ra f ;e is defined to predict the behavior of the wall-bounded gas convection between two vertical facing electrodes. Different bubbles dispersion mechanisms are observed depending on two-phase flow dynamics and physical properties of the mixture. The effect of forced convection in the channel is also investigated. A scaling law for plume thickness evolution for a large range of Prandtl-equivalent number values is proposed. These results show that the bubble plume can be efficiently controlled by an imposed electrolyte velocity
Modélisation de cathodes de piles à combustible à oxyde électrolyte solide (SOFC)
Dans ce travail, nous avons modĂ©lisĂ© le comportement en rĂ©gime permanent et des impĂ©dances Ă©lectrochimiques des cathodes de piles Ă combustible fonctionnant Ă haute tempĂ©rature et mettant en Ćuvre des oxydes cĂ©ramiques (SOFC). Deux approches sont proposĂ©es, la premiĂšre cherche Ă mettre en Ă©vidence les mĂ©canismes rĂ©actionnels intervenant selon la nature du matĂ©riau et la seconde de dĂ©terminer une morphologie optimale. L'Ă©tude sur Ă©lectrode de type couche mince, a dĂ©montrĂ© qu'une analyse Ă©lectrique fine permettait de discriminer les cinĂ©tiques pouvant limiter la rĂ©duction de l'oxygĂšne. Enfin, sur Ă©lectrode composite, nous avons montrĂ© le rĂŽle des paramĂštres gĂ©omĂ©triques tel que : la taille de grains, la porositĂ© et la composition. Ainsi, pour augmenter les performances d'une Ă©lectrode composite, il est nĂ©cessaire de diminuer la taille des grains du composite et d'en contrĂŽler la porositĂ©. Par ailleurs, nous avons dĂ©montrĂ© qu'il est judicieux d'utiliser une Ă©lectrode Ă gradient de composition. Enfin, dans la derniĂšre partie du manuscrit, nous avons estimĂ© expĂ©rimentalement une configuration de cellule Ă©lectrochimique devant permettre une caractĂ©risation fiable.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
PROCĂDĂ ET DISPOSITIF DE RĂGĂNĂRATION DE PIĂGE Ă OXYGĂNE
A method is described to regenerate an oxygen trap, comprising at least the following steps: circulating a current in the trap material (2) to reduce this material; measuring the value I.sub.m of the current and estimating its derivative dI.sub.m/dt in relation to time; estimating the length (.delta.) of material reduced by the current as a function of the value of the current and its derivative; stopping circulation of the current when the length of reduced material is at least equal to a threshold value (.delta..sub.s).On dĂ©crit un procĂ©dĂ© de rĂ©gĂ©nĂ©ration d'un piĂšge Ă oxygĂšne, comportant au moins les Ă©tapes suivantes: a) faire circuler un courant dans le matĂ©riau (2) du piĂšge, pour rĂ©duire ce dernier, b) mesurer la valeur l m dudit courant et estimer sa dĂ©rivĂ©e dl m /dt par rapport au temps, c) estimer la longueur (ÂŽ) de matĂ©riau qui est rĂ©duite par ledit courant en fonction de la valeur dudit courant et de sa dĂ©rivĂ©e, d) arrĂȘter la circulation du courant lorsque la longueur de matĂ©riau rĂ©duit est au moins Ă©gale Ă une valeur seuil (ÂŽ s )
Modeling comparison of high temperature fuel cell performance: electrochemical behaviours of SOFC and PCFC
International audienceFuel cells are highly efficient in terms of energy production, due to their high power efficiency. Solid Oxide Fuel Cells or Protonic Ceramic Fuel Cell are often proposed. The present paper aims to report on the electrochemical performance comparison between both systems by a Computational Fluid Dynamics approach. The developed model consists of mass, energy balances, and an electrochemical model that relates the fuel, air gas composition and temperature to voltage, current density, and other relevant fuel cell parameters. The electrochemical performances of SOFCs and PCFCs are analysed for several flow contigurations. The simulations show that, the flow management should be an essential key during the design optimization. In the PCFC operating conditions, steam is produced at the cathodic side and an excessive steam can involve clogging of PCFC cathode. As a result, electrochemical performance of PCFCs decreases more than SOFCs executions
- âŠ