4,554 research outputs found
1,2-Dimethyl-4,5-diphenylbenzene determined on a Bruker SMART X2S benchtop crystallographic system
The title compound, C(20)H(18), has two crystallographically independent molecules in the asymmetric unit. The phenyl substituents of molecule A are twisted away from the plane defined by the central benzene ring by 131.8 (2) and -52.7 (3)degrees. The phenyl substituents of molecule B are twisted by -133.3 (2) and 50.9 (3)degrees. Each molecule is stabilized by a pair of intraMolecular C(aryl, sp(2))-H center dot center dot center dot pi interactions, as well as by several interMolecular C(methyl, sp(3))-H center dot center dot center dot pi interactions
Binary Disassembly Block Coverage by Symbolic Execution vs. Recursive Descent
This research determines how appropriate symbolic execution is (given its current implementation) for binary analysis by measuring how much of an executable symbolic execution allows an analyst to reason about. Using the S2E Selective Symbolic Execution Engine with a built-in constraint solver (KLEE), this research measures the effectiveness of S2E on a sample of 27 Debian Linux binaries as compared to a traditional static disassembly tool, IDA Pro. Disassembly code coverage and path exploration is used as a metric for determining success. This research also explores the effectiveness of symbolic execution on packed or obfuscated samples of the same binaries to generate a model-based evaluation of success for techniques commonly employed by malware. Obfuscated results were much higher than expected, which lead to the discovery that S2E was not actually handling the multiple executable memory regions present in unpacker runtime code. Three recommendations are made to address the shortcomings of S2E and allow it to process obfuscated samples correctly
2,3-Bis(bromomethyl)-1,4-diphenylbenzene
In the title compound, C(20)H(16)Br(2), the terminal phenyl groups are twisted away from the central ring by approximately 55 and -125 degrees (average of four dihedral angles each), respectively. The crystal structure is stabilized by a combination of interMolecular and intraMolecular interactions including interMolecular pi-pi stacking interactions [C atoms of closest contact = 3.423 ( 5) angstrom]
Relationships between land use and nitrogen and phosphorus in New Zealand lakes
Developing policies to address lake eutrophication requires an understanding of the relative contribution of different nutrient sources and of how lake and catchment characteristics interact to mediate the source–receptor pathway. We analysed total nitrogen (TN) and total phosphorus (TP) data for 101 New Zealand lakes and related these to land use and edaphic sources of phosphorus (P). We then analysed a sub-sample of lakes in agricultural catchments to investigate how lake and catchment variables influence the relationship between land use and in-lake nutrients. Following correction for the effect of co-variation amongst predictor variables, high producing grassland (intensive pasture) was the best predictor of TN and TP, accounting for 38.6% and 41.0% of variation, respectively. Exotic forestry and urban area accounted for a further 18.8% and 3.6% of variation in TP and TN, respectively. Soil P (representing naturally-occurring edaphic P) was negatively correlated with TP, owing to the confounding effect of pastoral land use. Lake and catchment morphology (zmax and lake : catchment area) and catchment connectivity (lake order) mediated the relationship between intensive pasture and in-lake nutrients. Mitigating eutrophication in New Zealand lakes requires action to reduce nutrient export from intensive pasture and quantifying P export from plantation forestry requires further consideration
Thermodynamics and the Global Optimization of Lennard-Jones clusters
Theoretical design of global optimization algorithms can profitably utilize
recent statistical mechanical treatments of potential energy surfaces (PES's).
Here we analyze the basin-hopping algorithm to explain its success in locating
the global minima of Lennard-Jones (LJ) clusters, even those such as \LJ{38}
for which the PES has a multiple-funnel topography, where trapping in local
minima with different morphologies is expected. We find that a key factor in
overcoming trapping is the transformation applied to the PES which broadens the
thermodynamic transitions. The global minimum then has a significant
probability of occupation at temperatures where the free energy barriers
between funnels are surmountable.Comment: 13 pages, 13 figures, revte
The double-funnel energy landscape of the 38-atom Lennard-Jones cluster
The 38-atom Lennard-Jones cluster has a paradigmatic double-funnel energy
landscape. One funnel ends in the global minimum, a face-centred-cubic (fcc)
truncated octahedron. At the bottom of the other funnel is the second lowest
energy minimum which is an incomplete Mackay icosahedron. We characterize the
energy landscape in two ways. Firstly, from a large sample of minima and
transition states we construct a disconnectivity tree showing which minima are
connected below certain energy thresholds. Secondly we compute the free energy
as a function of a bond-order parameter. The free energy profile has two
minima, one which corresponds to the fcc funnel and the other which at low
temperature corresponds to the icosahedral funnel and at higher temperatures to
the liquid-like state. These two approaches show that the greater width of the
icosahedral funnel, and the greater structural similarity between the
icosahedral structures and those associated with the liquid-like state, are the
cause of the smaller free energy barrier for entering the icosahedral funnel
from the liquid-like state and therefore of the cluster's preferential entry
into this funnel on relaxation down the energy landscape. Furthermore, the
large free energy barrier between the fcc and icosahedral funnels, which is
energetic in origin, causes the cluster to be trapped in one of the funnels at
low temperature. These results explain in detail the link between the
double-funnel energy landscape and the difficulty of global optimization for
this cluster.Comment: 12 pages, 11 figures, revte
Nuclear Quasi-Elastic Electron Scattering Limits Nucleon Off-Mass Shell Properties
The use of quasi-elastic electron nucleus scattering is shown to provide
significant constraints on models of the proton electromagnetic form factor of
off-shell nucleons. Such models can be constructed to be consistent with
constraints from current conservation and low-energy theorems, while also
providing a contribution to the Lamb shift that might potentially resolve the
proton radius puzzle in muonic hydrogen. However, observations of quasi-elastic
scattering limit the overall strength of the off-shell form factors to values
that correspond to small contributions to the Lamb shift.Comment: 11 pages, 2 figures. Resubmission to improve the clarity, and correct
possible misconception
De-novo design of complementary (antisense) peptide mini-receptor inhibitor of interleukin 18 (IL-18).
Complementary (antisense) peptide mini-receptor inhibitors are complementary peptides designed to be receptor-surrogates that act by binding to selected surface features of biologically important proteins thereby inhibiting protein-cognate receptor interactions and subsequent biological effects. Previously, we described a complementary peptide mini-receptor inhibitor of interleukin-1beta (IL-1beta) that was designed to bind to an external surface loop (beta-bulge) of IL-1beta (Boraschi loop) clearly identified in the X-ray crystal structure of this cytokine. Here, we report the de-novo design and rational development of a complementary peptide mini-receptor inhibitor of cytokine interleukin-18 (IL-18), a protein for which there is no known X-ray crystal structure. Using sequence homology comparisons with IL-1beta, putative IL-18 surface loops are identified and used as a starting point for design, including a loop region 1 thought to be equivalent with the Boraschi loop of IL-1beta. Only loop region 1 complementary peptides are found to be promising leads as mini-receptor inhibitors of IL-18 but these are prevented from being properly successful owing to solubility problems. The application of "M-I pair mutagenesis" and inclusion of a C-terminal arginine residue are then sufficient to solve this problem and convert one lead peptide into a functional complementary peptide mini-receptor inhibitor of IL-18. This suggests that the biophysical and biological properties of complementary peptides can be improved in a rational and logical manner where appropriate, further strengthening the potential importance of complementary peptides as inhibitors of protein-protein interactions, even when X-ray crystal structural information is not readily available
- …