1,620 research outputs found
Reflections on the CLIVAR Early Career Scientists Symposium 2016
We present a summary report of the CLIVAR Early Career Scientists Symposium, a three-day event associated with the CLIVAR Open Science Conference held in Qingdao, China during September 2016. The Symposium aimed to capture the ideas of early career researchers on pressing science priorities, imminent challenges, and emerging opportunities to help guide the future evolution of CLIVAR. We identified the need for improving process-based understanding and predictability of regional climate variability and change, moving toward seamless predictions, and improving and expanding global observations. We emphasize the need for increasingly open science, including universal access to data, code, and publications as well as opportunities for international cooperation and exchange. As the next generation of climate scientists, we are dedicated to overcome the challenges outlined in this summary and are looking forward to advancing CLIVAR???s mission and activities
Exploring tandem ruthenium-catalyzed hydrogen transfer and SNAr chemistry
A hydrogen-transfer strategy for the catalytic functionalization of benzylic alcohols via electronic arene activation, accessing a diverse range of bespoke diaryl ethers and aryl amines in excellent isolated yields (38 examples, 70% average yield), is reported. Taking advantage of the hydrogen-transfer approach, the oxidation level of the functionalized products can be selected by judicious choice of simple and inexpensive additives
Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes
We measure electronic conductance through single conjugated molecules bonded
to Au metal electrodes with direct Au-C covalent bonds using the scanning
tunneling microscope based break-junction technique. We start with molecules
terminated with trimethyltin end groups that cleave off in situ resulting in
formation of a direct covalent sigma bond between the carbon backbone and the
gold metal electrodes. The molecular carbon backbone used in this study consist
of a conjugated pi-system that has one terminal methylene group on each end,
which bonds to the electrodes, achieving large electronic coupling of the
electrodes to the pi-system. The junctions formed with the prototypical example
of 1,4-dimethylenebenzene show a conductance approaching one conductance
quantum (G0 = 2e2/h). Junctions formed with methylene terminated oligophenyls
with two to four phenyl units show a hundred-fold increase in conductance
compared with junctions formed with amine-linked oligophenyls. The conduction
mechanism for these longer oligophenyls is tunneling as they exhibit an
exponential dependence of conductance with oligomer length. In addition,
density functional theory based calculations for the Au-xylylene-Au junction
show near-resonant transmission with a cross-over to tunneling for the longer
oligomers.Comment: Accepted to the Journal of the American Chemical Society as a
Communication
Banner News
https://openspace.dmacc.edu/banner_news/1335/thumbnail.jp
Banner News
https://openspace.dmacc.edu/banner_news/1336/thumbnail.jp
- …