6 research outputs found

    Nuclear magnetic resonance of hemoglobins.

    No full text
    Nuclear magnetic resonance (NMR) spectroscopy detects the interaction of radiofrequency (rf) radiation with the nuclear spins of molecules placed in an applied magnetic field. Because the spins are sensitive to their environment, and may be coupled to one another both through chemical bonds and through space, NMR can provide a wealth of information on the structure and dynamics of macromolecules. In particular, NMR has proven to be a powerful technique for investigating the structure-function relationship of hemoglobin (Hb). In this chapter, we focus on the procedures involved in applying one-dimensional and two-dimensional NMR spectroscopy to Hb and give examples of the information that may be obtained from this method. We begin with a brief outline of theory; a more complete treatment can be found in several excellent books (1–8). A typical NMR sample may contain approx 3×10−7 mol of Hb, which include ≈1021 hydrogen atoms, each of which has a nucleus (i.e., a proton) with a nuclear spin 1/2. In the presence of an applied magnetic field B 0, each nucleus will occupy one of two possible energy levels, corresponding to the z-component of the spin being either parallel or antiparallel to B 0, which conventionally points along the z-axis. At thermal equilibrium, a slight excess (a few parts in 105) of spins will occupy the lower energy level and be parallel to B 0. This small population difference is crucial to the NMR signal resulting from the absorption of rf energy, which excites spins from the lower to the upper energy state.</p

    The structure--function relationship of hemoglobin in solution at atomic resolution.

    No full text
    Hemoglobin (Hb) is an essential component of the circulatory system of vertebrates. Its chief physiological function is to transport oxygen from the lungs to the tissues. For reviews of the structure−function relationship in hemoglobin, see Dickerson and Geiss,1 Ho,2 and Ho and Lukin.3 Human normal adult hemoglobin (Hb A) is one of the most studied proteins and has served as a model or paradigm for multimeric allosteric proteins. Hemoglobin is a useful system for testing a basic premise of structural biology, which holds that the functional properties of a protein can be explained in terms of its structure and dynamic behavior on the atomic scale. Since the first crystal structures of Hb A were determined by Perutz and colleagues in the 1960s, extensive efforts have been devoted to elucidating the relationship of hemoglobin's structure with its physiologically important properties, including the cooperative binding of oxygen, and the control of oxygen affinity by pH (the Bohr effect) and allosteric effectors such as 2,3-bisphosphoglycerate (2,3-BPG). Despite these efforts, the detailed structural basis of these properties is not fully understood, and some aspects remain controversial. Much of our current understanding of Hb A has been obtained with reference to X-ray crystal structures. However, since the protein performs its physiological functions in the solution state, it is useful to investigate its structure−function relationships in solution, using techniques including infrared, resonance Raman, and nuclear magnetic resonance (NMR) spectroscopies.</p

    NMR investigation of the dynamics of tryptophan side-chains in hemoglobins.

    No full text
    NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.</p

    MONTE: An automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins.

    No full text
    A general-purpose Monte Carlo assignment program has been developed to aid in the assignment of NMR resonances from proteins. By virtue of its flexible data requirements the program is capable of obtaining assignments of both heavily deuterated and fully protonated proteins. A wide variety of source data, such as inter-residue scalar connectivity, inter-residue dipolar (NOE) connectivity, and residue specific information, can be utilized in the assignment process. The program can also use known assignments from one form of a protein to facilitate the assignment of another form of the protein. This attribute is useful for assigning protein-ligand complexes when the assignments of the unliganded protein are known. The program can be also be used as an interactive research tool to assist in the choice of additional experimental data to facilitate completion of assignments. The assignment of a deuterated 45 kDa homodimeric Glutathione-S-transferase illustrates the principal features of the program.</p

    Quaternary structure of carbonmonoxyhemoglobins in solution: structural changes induced by the allosteric effector inositol hexaphosphate.

    No full text
    We have applied the residual dipolar coupling (RDC) method to investigate the solution quaternary structures of (2)H- and (15)N-labeled human normal adult recombinant hemoglobin (rHb A) and a low-oxygen-affinity mutant recombinant hemoglobin, rHb(alpha96Val-->Trp), both in the carbonmonoxy form, in the absence and presence of an allosteric effector, inositol hexaphosphate (IHP), using a stretched polyacrylamide gel as the alignment medium. Our recent RDC results [Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 517-520] indicate that the quaternary structure of HbCO A in solution is a dynamic ensemble between two previously determined crystal structures, R (crystals grown under high-salt conditions) and R2 (crystals grown under low-salt conditions). On the basis of a comparison of the geometric coordinates of the T, R, and R2 structures, it has been suggested that the oxygenation of Hb A follows the transition pathway from T to R and then to R2, with R being the intermediate structure [Srinivasan, R., and Rose, G. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11113-11117]. The results presented here suggest that IHP can shift the solution quaternary structure of HbCO A slightly toward the R structure. The solution quaternary structure of rHbCO(alpha96Val-->Trp) in the absence of IHP is similar to that of HbCO A in the presence of IHP, consistent with rHbCO(alpha96Val-->Trp) having an affinity for oxygen lower than that of Hb A. Moreover, IHP has a much stronger effect in shifting the solution quaternary structure of rHbCO(alpha96Val-->Trp) toward the R structure and toward the T structure, consistent with IHP causing a more pronounced decrease in its oxygen affinity. The results presented in this work, as well as other results recently reported in the literature, clearly indicate that there are multiple quaternary structures for the ligated form of hemoglobin. These results also provide new insights regarding the roles of allosteric effectors in regulating the structure and function of hemoglobin. The classical two-state/two-structure allosteric mechanism for the cooperative oxygenation of hemoglobin cannot account for the structural and functional properties of this protein and needs to be revised.</p

    A biophysical investigation of recombinant hemoglobins with aromatic B10 mutations in the distal heme pockets.

    No full text
    This study examines the structural and functional effects of amino acid substitutions in the distal side of both the alpha- and beta-chain heme pockets of human normal adult hemoglobin (Hb A). Using our Escherichia coli expression system, we have constructed four recombinant hemoglobins: rHb(alphaL29F), rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W). The alpha29 and beta28 residues are located in the B10 helix of the alpha- and beta-chains of Hb A, respectively. The B10 helix is significant because of its proximity to the ligand-binding site. Previous work showed the ability of the L29F mutation to inhibit oxidation. rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) exhibit very low oxygen affinity and reduced cooperativity compared to those of Hb A, while the previously studied rHb(alphaL29F) exhibits high oxygen affinity. Proton nuclear magnetic resonance spectroscopy indicates that these mutations in the B10 helix do not significantly perturb the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces, while as expected, the tertiary structures near the heme pockets are affected. Experiments in which visible spectrophotometry was utilized reveal that rHb(alphaL29F) has equivalent or slower rates of autoxidation and azide-induced oxidation than does Hb A, while rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) have increased rates. Bimolecular rate constants for NO-induced oxidation have been determined using a stopped-flow apparatus. These findings indicate that amino acid residues in the B10 helix of the alpha- and beta-chains can play different roles in regulating the functional properties and stability of the hemoglobin molecule. These results may provide new insights for designing a new generation of hemoglobin-based oxygen carriers.</p
    corecore