606 research outputs found

    Relating Spatial Patterns of Stream Metabolism to Distributions of Juveniles Salmonids at the River Network Scale

    Get PDF
    Understanding the factors that drive spatial patterns in stream ecosystem processes and the distribution of aquatic biota is important to effective management of these systems and the conservation of biota at the network scale. In this study, we conducted field surveys throughout an extensive river network in NE Oregon that supports diminishing populations of wild salmonids. We collected data on physical habitat, nutrient concentrations, biofilm standing stocks, stream metabolism (gross primary production [GPP] and ecosystem respiration [ER]), and ESA‐listed juvenile salmonid density from approximately 50 sites across two sub‐basins. Our goals were to (1) to evaluate network patterns in these metrics, and (2) determine network‐scale linkages among these metrics, thus providing inference of processes driving observed patterns. Ambient nitrate‐N and phosphate‐P concentrations were low across both sub‐basins (\u3c40 μg/L). Nitrate‐N decreased with watershed area in both sub‐basins, but phosphate‐P only decreased in one sub‐basin. These spatial patterns suggest co‐limitation in one sub‐basin but N limitation in the other; experimental results using nutrient diffusing substrates across both sub‐basins supported these predictions. Solar exposure, temperature, GPP, ER, and GPP:ER increased with watershed area, but biofilm Chl a and ash‐free dry mass (AFDM) did not. Spatial statistical network (SSN) models explained between 70% and 75% of the total variation in biofilm Chl a, AFDM, and GPP, but only 21% of the variation in ER. Temperature and nutrient concentrations were the most supported predictors of Chl aand AFDM standing stocks, but these variables explained little of the total variation compared to spatial autocorrelation. In contrast, solar exposure and temperature were the most supported variables explaining GPP, and these variables explained far more variation than autocorrelation. Solar exposure, temperature, and nutrient concentrations explained almost none of the variation in ER. Juvenile salmonids—a key management focus in these sub‐basins—were most abundant in cool stream sections where rates of GPP were low, suggesting temperature constraints on these species restrict their distribution to oligotrophic areas where energy production at the base of the food web may be limited

    Strict inequalities of critical values in continuum percolation

    Full text link
    We consider the supercritical finite-range random connection model where the points x,yx,y of a homogeneous planar Poisson process are connected with probability f(∣y−x∣)f(|y-x|) for a given ff. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality pcsite>pcbondp_c^{\rm site} > p_c^{\rm bond}. We also show that reducing the connection function ff strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on ff (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.Comment: 38 pages, 8 figure

    Immunogenetic studies of juvenile dermatomyositis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66141/1/j.1399-0039.1983.tb00371.x.pd

    Brain connectivity using geodesics in HARDI

    Get PDF
    International audienceWe develop an algorithm for brain connectivity assessment using geodesics in HARDI (high angular resolution diffusion imaging). We propose to recast the problem of finding fibers bundles and connectivity maps to the calculation of shortest paths on a Riemannian manifold defined from fiber ODFs computed from HARDI measurements. Several experiments on real data show that out method is able to segment fibers bundles that are not easily recovered by other existing methods

    The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma

    Full text link
    We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovasz local lemma in probabilistic combinatorics. We show that the conclusion of the Lovasz local lemma holds for dependency graph G and probabilities {p_x} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore, we show that the usual proof of the Lovasz local lemma -- which provides a sufficient condition for this to occur -- corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer and explicitly by Dobrushin. We also present some refinements and extensions of both arguments, including a generalization of the Lovasz local lemma that allows for "soft" dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity. To be published in J. Stat. Phy

    Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    Get PDF
    Abstract Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naĂŻve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

    Treatment challenges in and outside a network setting: Head and neck cancers

    Get PDF
    Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients
    • …
    corecore