10 research outputs found
Targeted lipidomics reveals activation of resolution pathways in knee osteoarthritis in humans
Proteomic
Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura
Publisher Copyright: © 2023, The Author(s).Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.Peer reviewe
Effects of anticoagulants and storage conditions on clinical oxylipid levels in human plasma
Pathophysiology and treatment of rheumatic disease
An Advanced LC-MS/MS Platform for the Analysis of Specialized Pro-Resolving Lipid Mediators
Pathophysiology and treatment of rheumatic disease
Acute phase inflammation is characterized by rapid changes in plasma/peritoneal fluid N-glycosylation in mice
Murine zymosan-induced peritonitis is a widely used model for studying the molecular and cellular events responsible for the initiation, persistence and/or resolution of inflammation. Among these events, it is becoming increasingly evident that changes in glycosylation of proteins, especially in the plasma and at the site of inflammation, play an important role in the inflammatory response. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based glycosylation profiling, we investigated the qualitative and quantitative effect of zymosan-induced peritonitis on N-glycosylation in mouse plasma and peritoneal fluid. Our results show that both N-glycomes exhibit highly similar glycosylation patterns, consisting mainly of diantennary and triantennary complex type N-glycans with high levels (> 95 %) of galactosylation and sialylation (mostly NeuGc) and a medium degree of core fucosylation (30 %). Moreover, MS/MS structural analysis, assisted by linkage-specific derivatization of sialic acids, revealed the presence of O-acetylated sialic acids as well as disialylated antennae ("branching sialylation") characterized by the presence of alpha 2-6-linked NeuGc on the GlcNAc of the NeuGc alpha 2-3-Gal beta 1-3-GlcNAc terminal motif. A significant decrease of (core) fucosylation together with an increase of both alpha 2-3-linked NeuGc and "branching sialylation" were observed in N-glycomes of mice challenged with zymosan, but not in control mice injected with PBS. Importantly, substantial changes in glycosylation were already observed 12 h after induction of peritonitis, thereby demonstrating an unexpected velocity of the biological mechanisms involved.Pathophysiology and treatment of rheumatic disease
Detection and Structural Elucidation of Esterified Oxylipids in Human Synovial Fluid by Electrospray Ionization-Fourier Transform Ion-Cyclotron Mass Spectrometry and Liquid Chromatography-Ion Trap-MS3: Detection of Esterified Hydroxylated Docosapentaenoic Acid Containing Phospholipids
Pathophysiology and treatment of rheumatic disease
Anti-Inflammatory and Proresolving Effects of the Omega-6 Polyunsaturated Fatty Acid Adrenic Acid
Polyunsaturated fatty acids (PUFAs) and their metabolites are potent regulators of inflammation. Generally, omega (n)-3 PUFAs are considered proresolving whereas n-6 PUFAs are classified as proinflammatory. In this study, we characterized the inflammatory response in murine peritonitis and unexpectedly found the accumulation of adrenic acid (AdA), a poorly studied n-6 PUFA. Functional studies revealed that AdA potently inhibited the formation of the chemoattractant leukotriene B-4 (LTB4), specifically in human neutrophils, and this correlated with a reduction of its precursor arachidonic acid (AA) in free form. AdA exposure in human monocyte-derived macrophages enhanced efferocytosis of apoptotic human neutrophils. In vivo, AdA treatment significantly alleviated arthritis in an LTB4-dependent murine arthritis model. Our findings are, to our knowledge, the first to indicate that the n-6 fatty acid AdA effectively blocks production of LTB4 by neutrophils and could play a role in resolution of inflammation in vivo.Pathophysiology and treatment of rheumatic disease