28 research outputs found

    Survey of Activated FLT3 Signaling in Leukemia

    Get PDF
    Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia

    Personalized Medicine for Pathological Circadian Dysfunctions

    Get PDF
    The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities

    Positional Cloning of the Mouse Circadian Clock Gene

    Get PDF
    AbstractWe used positional cloning to identify the circadian Clock gene in mice. Clock is a large transcription unit with 24 exons spanning ∼100,000 bp of DNA from which transcript classes of 7.5 and ∼10 kb arise. Clock encodes a novel member of the bHLH–PAS family of transcription factors. In the Clock mutant allele, an A→T nucleotide transversion in a splice donor site causes exon skipping and deletion of 51 amino acids in the CLOCK protein. Clock is a unique gene with known circadian function and with features predicting DNA binding, protein dimerization, and activation domains. CLOCK represents the second example of a PAS domain–containing clock protein (besides Drosophila PERIOD), which suggests that this motif may define an evolutionarily conserved feature of the circadian clock mechanism
    corecore