22 research outputs found

    Effect of Selective Decontamination of the Digestive Tract on Hospital Mortality in Critically Ill Patients Receiving Mechanical Ventilation: A Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Whether selective decontamination of the digestive tract (SDD) reduces mortality in critically ill patients remains uncertain. OBJECTIVE: To determine whether SDD reduces in-hospital mortality in critically ill adults. DESIGN, SETTING, AND PARTICIPANTS: A cluster, crossover, randomized clinical trial that recruited 5982 mechanically ventilated adults from 19 intensive care units (ICUs) in Australia between April 2018 and May 2021 (final follow-up, August 2021). A contemporaneous ecological assessment recruited 8599 patients from participating ICUs between May 2017 and August 2021. INTERVENTIONS: ICUs were randomly assigned to adopt or not adopt a SDD strategy for 2 alternating 12-month periods, separated by a 3-month interperiod gap. Patients in the SDD group (n = 2791) received a 6-hourly application of an oral paste and administration of a gastric suspension containing colistin, tobramycin, and nystatin for the duration of mechanical ventilation, plus a 4-day course of an intravenous antibiotic with a suitable antimicrobial spectrum. Patients in the control group (n = 3191) received standard care. MAIN OUTCOMES AND MEASURES: The primary outcome was in-hospital mortality within 90 days. There were 8 secondary outcomes, including the proportion of patients with new positive blood cultures, antibiotic-resistant organisms (AROs), and Clostridioides difficile infections. For the ecological assessment, a noninferiority margin of 2% was prespecified for 3 outcomes including new cultures of AROs. RESULTS: Of 5982 patients (mean age, 58.3 years; 36.8% women) enrolled from 19 ICUs, all patients completed the trial. There were 753/2791 (27.0%) and 928/3191 (29.1%) in-hospital deaths in the SDD and standard care groups, respectively (mean difference, -1.7% [95% CI, -4.8% to 1.3%]; odds ratio, 0.91 [95% CI, 0.82-1.02]; P = .12). Of 8 prespecified secondary outcomes, 6 showed no significant differences. In the SDD vs standard care groups, 23.1% vs 34.6% had new ARO cultures (absolute difference, -11.0%; 95% CI, -14.7% to -7.3%), 5.6% vs 8.1% had new positive blood cultures (absolute difference, -1.95%; 95% CI, -3.5% to -0.4%), and 0.5% vs 0.9% had new C difficile infections (absolute difference, -0.24%; 95% CI, -0.6% to 0.1%). In 8599 patients enrolled in the ecological assessment, use of SDD was not shown to be noninferior with regard to the change in the proportion of patients who developed new AROs (-3.3% vs -1.59%; mean difference, -1.71% [1-sided 97.5% CI, -∞ to 4.31%] and 0.88% vs 0.55%; mean difference, -0.32% [1-sided 97.5% CI, -∞ to 5.47%]) in the first and second periods, respectively. CONCLUSIONS AND RELEVANCE: Among critically ill patients receiving mechanical ventilation, SDD, compared with standard care without SDD, did not significantly reduce in-hospital mortality. However, the confidence interval around the effect estimate includes a clinically important benefit

    Context-driven discovery of gene cassettes in mobile integrons using a computational grammar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene discovery algorithms typically examine sequence data for low level patterns. A novel method to computationally discover higher order DNA structures is presented, using a context sensitive grammar. The algorithm was applied to the discovery of gene cassettes associated with integrons. The discovery and annotation of antibiotic resistance genes in such cassettes is essential for effective monitoring of antibiotic resistance patterns and formulation of public health antibiotic prescription policies.</p> <p>Results</p> <p>We discovered two new putative gene cassettes using the method, from 276 integron features and 978 GenBank sequences. The system achieved <it>κ </it>= 0.972 annotation agreement with an expert gold standard of 300 sequences. In rediscovery experiments, we deleted 789,196 cassette instances over 2030 experiments and correctly relabelled 85.6% (<it>α </it>≥ 95%, <it>E </it>≤ 1%, mean sensitivity = 0.86, specificity = 1, F-score = 0.93), with no false positives.</p> <p>Error analysis demonstrated that for 72,338 missed deletions, two adjacent deleted cassettes were labeled as a single cassette, increasing performance to 94.8% (mean sensitivity = 0.92, specificity = 1, F-score = 0.96).</p> <p>Conclusion</p> <p>Using grammars we were able to represent heuristic background knowledge about large and complex structures in DNA. Importantly, we were also able to use the context embedded in the model to discover new putative antibiotic resistance gene cassettes. The method is complementary to existing automatic annotation systems which operate at the sequence level.</p

    IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study

    Get PDF
    PurposeRobust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness.MethodsWe conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients.ResultsWe show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients.ConclusionThese data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus

    Computational inference of grammars for larger-than-gene structures from annotated gene sequences

    No full text
    Motivation: Larger than gene structures (LGS) are DNA segments that include at least one gene and often other segments such as inverted repeats and gene promoters. Mobile genetic elements (MGE) such as integrons are LGS that play an important role in horizontal gene transfer, primarily in Gram-negative organisms. Known LGS have a profound effect on organism virulence, antibiotic resistance and other properties of the organism due to the number of genes involved. Expert-compiled grammars have been shown to be an effective computational representation of LGS, well suited to automating annotation, and supporting de novo gene discovery. However, development of LGS grammars by experts is labour intensive and restricted to known LGS. Objectives: This study uses computational grammar inference methods to automate LGS discovery. We compare the ability of six algorithms to infer LGS grammars from DNA sequences annotated with genes and other short sequences. We compared the predictive power of learned grammars against an expert-developed grammar for gene cassette arrays found in Class 1, 2 and 3 integrons, which are modular LGS containing up to 9 of about 240 cassette types. Results: Using a Bayesian generalization algorithm our inferred grammar was able to predict >95% of MGE structures in a corpus of 1760 sequences obtained from Genbank (F-score 75%). Even with 100% noise added to the training and test sets, we obtained an F-score of 68%, indicating that the method is robust and has the potential to predict de novo LGS structures when the underlying gene features are known.6 page(s

    Assessing the public acceptability of proposed policy interventions to reduce the misuse of antibiotics in Australia: A report on two community juries

    Get PDF
    Objective: To elicit the views of well-informed community members on the acceptability of proposed policy interventions designed to improve community use of antibiotics in Australia. Design: Two community juries held in 2016. Setting and participants: Western Sydney and Dubbo communities in NSW, Australia. Twenty-nine participants of diverse social and cultural backgrounds, mixed genders and ages recruited via public advertising: one jury was drawn from a large metropolitan setting; the other from a regional/rural setting. Main outcome measure: Jury verdict and rationale in response to a prioritization task and structured questions. Results: Both juries concluded that potential policy interventions to curb antibiotic misuse in the community should be directed towards: (i) ensuring that the public and prescribers were better educated about the dangers of antibiotic resistance; (ii) making community-based human and animal health-care practitioners accountable for their prescribing decisions. Patient-centred approaches such as delayed prescribing were seen as less acceptable than prescriber-centred approaches; both juries completely rejected any proposal to decrease consumer demand by increasing antibiotic prices. Conclusion: These informed citizens acknowledged the importance of raising public awareness of the risks, impacts and costs of antibiotic resistance and placed a high priority on increasing social and professional accountability through restrictive measures. Their overarching aim was that policy interventions should be directed towards creating collective actions and broad social support for changing antibiotic use through establishing and explaining the need for mechanisms to control and support better prescribing by practitioners, while not transferring the burdens, costs and risks of interventions to consumers

    Culture-Negative Endocarditis Due to Houston Complex Bartonella henselae Acquired in Noumea, New Caledonia

    No full text
    A 44-year-old man with a bioprosthetic aortic valve suffered destructive endocarditis with severe embolic disease due to Bartonella henselae infection. Multilocus sequence typing was successfully performed with crude preparations of operative tissue as templates, and the infecting organism was determined to be typical of the Houston clonal group, although it was never cultured from blood or tissue. This is the first report of B. henselae infection in the South Pacific, and it reminds one that B. henselae is a cause of potentially lethal culture-negative endocarditis which may respond poorly to conventional empirical therapy. Nothing is known of the epidemiology of the infection in this region, but it is likely to be common and to contain representatives of both major clonal complexes. This study emphasizes the ease with which multilocus sequence typing can be used directly with tissue, which is important because of suggestions of strain-dependent clinical outcomes
    corecore