1,742 research outputs found

    MHD simulations of the formation and propagation of protostellar jets to observational length scales

    Full text link
    We present 2.5-D global, ideal MHD simulations of magnetically and rotationally driven protostellar jets from Keplerian accretion discs, wherein only the initial magnetic field strength at the inner radius of the disc, BiB_{\rm i}, is varied. Using the AMR-MHD code AZEUS, we self-consistently follow the jet evolution into the observational regime (>103 AU>10^3\,\mathrm{AU}) with a spatial dynamic range of ∼6.5×105\sim6.5\times10^5. The simulations reveal a three-component outflow: 1) A hot, dense, super-fast and highly magnetised 'jet core'; 2) a cold, rarefied, trans-fast and highly magnetised 'sheath' surrounding the jet core and extending to a tangential discontinuity; and 3) a warm, dense, trans-slow and weakly magnetised shocked ambient medium entrained by the advancing bow shock. The simulations reveal power-law relationships between BiB_{\rm i} and the jet advance speed, vjetv_{\rm jet}, the average jet rotation speed, ⟨vφ⟩\langle v_\varphi\rangle, as well as fluxes of mass, momentum, and kinetic energy. Quantities that do not depend on BiB_{\rm i} include the plasma-β\beta of the transported material which, in all cases, seems to asymptote to order unity. Jets are launched by a combination of the 'magnetic tower' and 'bead-on-a-wire' mechanisms, with the former accounting for most of the jet acceleration---even for strong fields---and continuing well beyond the fast magnetosonic point. At no time does the leading bow shock leave the domain and, as such, these simulations generate large-scale jets that reproduce many of the observed properties of protostellar jets including their characteristic speeds and transported fluxes.Comment: 26 pages, 16 figures. Accepted for publication in MNRA

    Non-invasive assessment of lower limb alignment is accurate for pre-operative planning and post-operative follow up

    Get PDF
    Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced. Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different

    The importance of understanding computer analyses in civil engineering

    Get PDF
    Sophisticated computer modelling systems are widely used in civil engineering analysis. This paper takes examples from structural engineering, environmental engineering, flood management and geotechnical engineering to illustrate the need for civil engineers to be competent in the use of computer tools. An understanding of a model's scientific basis, appropriateness, numerical limitations, validation, verification and propagation of uncertainty is required before applying its results. A review of education and training is also suggested to ensure engineers are competent at using computer modelling systems, particularly in the context of risk management. 1. Introductio

    Delivering building simulation information via new communication media

    Get PDF
    Often, the goal of understanding how the building works and the impact of design decisions is hampered by limitations in the presentation of performance data. Contemporary results display is often constrained to what was considered good practice some decades ago rather than in ways that preserve the richness of the underlying data. This paper reviews a framework for building simulation support that addresses these presentation limitations as well as making a start on issues related to distributed team working. The framework uses tools and communication protocols that enable concurrent information sharing and provide a richer set of options for understanding complex performance relationships

    Mechanisms and the Evidence Hierarchy

    Get PDF
    Evidence-based medicine (EBM) makes use of explicit procedures for grading evidence for causal claims. Normally, these procedures categorise evidence of correlation produced by statistical trials as better evidence for a causal claim than evidence of mechanisms produced by other methods. We argue, in contrast, that evidence of mechanisms needs to be viewed as complementary to, rather than inferior to, evidence of correlation. In this paper we first set out the case for treating evidence of mechanisms alongside evidence of correlation in explicit protocols for evaluating evidence. Next we provide case studies which exemplify the ways in which evidence of mechanisms complements evidence of correlation in practice. Finally, we put forward some general considerations as to how the two sorts of evidence can be more closely integrated by EBM

    Critical infrastructure lifelines and the politics of anthropocentric resilience

    Get PDF
    The discourse of resilience has increasingly been utilised to advance the political prioritisation of enhanced security and to extend the performance of risk management in the Anthropocene. This has been notably advanced through integrated approaches that engage with uncertainty, complexity and volatility in order to survive and thrive in the future. Within this context, and drawing on findings from a number of EU-wide research projects tasked with operationalising critical infrastructure resilience, this paper provides a much- needed assessment of how resilience ideas are shaping how critical infrastructure providers and operators deal with complex risks to ‘lifeline’ systems and networks, whilst also illuminating the tensions elicited in the paradigm shift from protective-based risk management towards adaptive-based resilience. In doing so, we also draw attention to the implications of this transition for organisational governance and for the political ecologies of the Anthropocene that calls for more holistic, adaptable and equitable ways of assessing and working with risk across multiple systems, networks and scales

    AZEuS: An Adaptive Zone Eulerian Scheme for Computational MHD

    Full text link
    A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical magnetohydrodynamical (MHD) fluid code, AZEuS, is described. The AMR module in AZEuS has been completely adapted to the staggered mesh that characterises the ZEUS family of codes, on which scalar quantities are zone-centred and vector components are face-centred. In addition, for applications using static grids, it is necessary to use higher-order interpolations for prolongation to minimise the errors caused by waves crossing from a grid of one resolution to another. Finally, solutions to test problems in 1-, 2-, and 3-dimensions in both Cartesian and spherical coordinates are presented.Comment: 52 pages, 17 figures; Accepted for publication in ApJ

    The ionic contribution of proteoglycans to mechanical stiffness of the meniscus

    Get PDF
    Load transmission is an important function of the meniscus. In articular cartilage, proteoglycans help maintain hydration via negatively charged moieties. We aimed to investigate the influence of electrostatic effects on stiffness of meniscal tissue. Circular discs from bovine menisci of 8 mm diameter and 5 mm thickness were placed within a confined compression chamber. The apparatus was bathed in distilled water, 0.14 M PBS or 3 M PBS before being subjected to 5% ramp compressive strain and held for 300s. FEBio software was used to fit resultant relaxation curves to a non-linear poroviscoelastic model with strain dependent Holmes-Mow permeability. Analysis was conducted using one-way ANOVA with Tukey post-hoc analysis. 10 samples were tested in each solution. Significant differences (p < 0.05) were observed between the values for Young's modulus, zero strain dependent permeability and the viscoelastic coefficient for samples tested in 3 M PBS as compared to deionised water/0.14 M PBS. No significant differences were observed in the strain dependent/stiffening coefficients or the relaxation time. Approximately 79% of the stiffness of the meniscus appears attributable to ionic effects. Ionic effects play a significant role in the mechanical stiffness of the meniscus. It is important to include the influence of ionic effects when developing mathematical models of this tissue

    Identifying car ingress movement strategies before and after total knee replacement

    Get PDF
    Background: Post-operative performance of knee bearings is typically assessed in activities of daily living by means of motion capture. Biomechanical studies predominantly explore common tasks such as walking, standing and stair climbing, while overlooking equally demanding activities such as embarking a vehicle. Aims: The aim of this work is to evaluate changes in the movement habits of patients after total knee arthroplasty surgery in comparison to healthy age-matched control participants. Methods: A mock-up car was fabricated based on the architecture of a common vehicle. Ten control participants and 10 patients with severe osteoarthritis of the knee attended a single- and three-motion capture session(s), respectively. Participants were asked to enter the car and sit comfortably adopting a driving position. Three trials per session were used for the identification of movement strategies by means of hierarchical clustering. Task completion time was also measured. Results: Patients’ movement behaviour didn’t change significantly following total knee arthroplasty surgery. Control participants favoured different movement strategies compared to patients post-operatively. Group membership, height and sidedness of the affected joint were found to be non-significant in task completion time. Conclusion: This study describes an alternative movement identification technique for the analysis of the ingress movement that may be used to clinically assess knee bearings and aid in movement simulations and vehicle design
    • …
    corecore