22 research outputs found

    General report of TC 106: Unsaturated soils

    No full text
    This general report summarises the contributions on unsaturated soil mechanics submitted to the Discussion Session of TC106 – Unsaturated soils –at the 18th International Conference on Soil Mechanics and Geotechnical Engineering held in Paris in September 2013. The thirty-five papers collected under the framework of unsaturated soil mechanics cover a broad spectrum of problems and procedures at varying scales. Much attention is devoted to issues related to experimental techniques and procedures for hydro-mechanical characterisation of unsaturated soils, with special attention to retention behaviour. Swelling, shrinkage and eventually cracking are the processes which seem to capture most of the attention in view of the performance of engineering systems. A few contribution deal with constitutive and numerical approaches, while only a couple of papers introduce unsaturated soil mechanics into engineering practice. While innovative efforts are mainly addressed to experimental techniques in the laboratory, the most challenging issues in future perspective appear to be related to the assessment of unsaturated geotechnical systems in the field, including contaminated soils and mine tailings, besides to more traditional applications dealing with compacted soil structures and soil-atmosphere interaction.Geoscience & EngineeringCivil Engineering and Geoscience

    Modelling free gas overpressure in peat layers

    Get PDF
    The paper assesses fully coupled hydro-mechanical numerical approaches developed for unsaturated soils to model the effect of free gas overpressure on the response of peat layers. A simple linear model is used for the soil skeleton, however, the global response is non-linear due to changes over time of the compressibility of the solid skeleton over the compressibility of the fluid, and solubility of gas in water. The overpressure generated in foundation peat layers by barometric pressure oscillations is modelled, and the results are compared to literature data. The development of pore overpressure upon unloading is analysed as a function of the soil skeleton compressibility, and the consequences on the average stress acting on the soil skeleton are discussed.Geo-engineerin

    Experimental determination of the shear strength of peat from standard undrained triaxial tests: Correcting for the effects of end restraint

    No full text
    Conventional triaxial tests on peats are strongly criticised due to the very high shear strength parameters obtained from standard data elaboration, leading to unrealistic factors of safety when used in geotechnical design and assessment. Various operational approaches have been proposed in the literature to overcome this difficulty; however, they seem to lack consistent mechanical background. Some of the issues related to the shear strength evaluation of peats from triaxial tests come from the non-uniform stress and strain states developing in the samples well before failure is attained, due to end restraint effects. Undrained triaxial compression tests were performed on reconstituted peat to examine the influence of end restraint on the deviatoric stress, excess pore pressure and deviatoric strain response. Samples were tested with standard rough end platens and with modified platens to reduce the friction between the sample and bottom and top caps. Four different initial height-to-diameter ratios were examined, to reduce the consequences of rough end platens on the sample response. The results indicate that end restraint contributes dramatically to overestimating the shear strength of peat, due to the increase in both the calculated deviatoric stress and the measured excess pore pressure at the bottom of the sample. Suggestions are given to quantify the influence of end restraint in the interpretation of standard data, in an attempt to suggest viable procedures to determine more reliable effective and undrained shear strength parameters from standard triaxial tests. Accepted Author ManuscriptGeo-engineerin

    Pre-failure behaviour of reconstituted peats in triaxial compression

    Get PDF
    This paper discusses the results of an experimental programme designed to investigate the deviatoric behaviour of peats. The results are obtained from triaxial experiments carried out on reconstituted peat samples. The interpretation of the experimental results follows a hierarchical approach in an attempt to derive the ingredients that an elastic–plastic model for peats should contain, including the yield locus, the hardening mechanism and the flow rule. The results obtained from stress tests along different loading directions show that purely volumetric hardening is not adequate to describe the deviatoric response of peat and that a deviatoric strain-dependent component should be included. The plastic deformation mechanism also depends on the previous stress history experienced by the sample. Stress and strain path dependence of the interaction mechanisms between the peat matrix and the fibres is discussed as a possible physical reason for the observed behaviour. This work offers a relevant set of data and information to guide the rational development and the calibration of constitutive laws able to model the deviatoric behaviour of peats.Geo-engineerin

    Calibration of a simple 1D model for the hydraulic response of regional dykes in the Netherlands

    Get PDF
    A simple numerical model was set up to investigate the hydraulic behaviour of a regional dyke to improve understanding of the response under variable atmospheric conditions. The unsaturated hydraulic properties of the dyke body and the relevant foundation layers were calibrated either on the results of laboratory tests or on a national database, namely the Staringreeks, compiled for typical Dutch soils. The boundary conditions were imposed according to the weather history at the top, and to the pore pressures measured in the field at the bottom of the representative soil column. The results indicate that a simple 1D model is able to accurately reproduce the suction time history in the dyke core, provided the hydraulic conductivity and soil water retention properties are properly calibrated. The optimised hydraulic conductivities are typically two orders of magnitude higher than the saturated hydraulic conductivity from the laboratory tests, but comparable to the ones suggested in the database developed on field data. The work highlights that cautious evaluation of laboratory data is needed for field applications, and that direct information from the field should be used to validate numerical models in the presence of organic soils.Geo-engineeringResources & Recyclin

    Determination of water retention properties of silty sands by means of combined commercial techniques

    Get PDF
    A recent increase in frequency and severity of exceptional climatic events is of concern for the stability of natural and artificial slopes. These undergo continuous evaporation and infiltration cycles, which change the suction distribution and trigger shrinkage, swelling, cracking, and surfi-cial erosion, overall decreasing the soil strength. To assess the impact of these climatic stresses, the determination of water retention properties is a priority. Although advanced techniques have been proposed in the last few decades to this end, simpler commercially available techniques allow col-lecting data for a larger number of samples in a shorter time, thus enabling a basic description of the water retention properties for a larger database of soils. Data on two silty sands, coming from very different climatic environments in Europe, were collected with a combination of two simple commercial devices, and the results were modelled with a van Genuchten’s law. The fitted pa-rameters were found to correlate well with the amount of fines, irrespective of the different origin and composition of the two soils. Eventually, the limitation of the approach is discussed based on the results of cyclic drying–wetting tests.Geo-engineerin

    The role of the hydraulic resistance of the river bed and the time dependent response of the foundation layers in the assessment of water defences for macrostability and piping

    No full text
    In the assessment of water defences for macrostability and backward erosion piping the design hydraulic load mostly refers to steady state conditions in equilibrium with the maximum river water level. In this contribution, we show selected results of coupled hydromechanical numerical analyses of a paradigmatic Dutch case, which demonstrate that this assumption leads to high overestimation of the true hydraulic loads at the toe of the water defence embankment. The hydraulic resistance of the bed of the river and the deformability of the foundation layers introduce a decay in the pore pressure time history, which largely reduces the action on the hydraulic protection structure. The finite element model was developed to assist in the assessment of an innovative solution based on passive wells as a measure to reduce the risk for macrostability and piping. It was calibrated on available pore pressure measurements in the foundation of critical sections of the dykes of the river Lek in the Netherlands under the daily tidal action. The model was used to determine the distribution of pore pressure expected in the subsoil of the dykes for the design maximum load. The calibration stage of the model is specifically interesting to the aim of evaluating the reduction of the input pore pressure due to the hydromechanical resistance of the geotechnical system.Accepted author manuscriptGeo-engineerin

    Gas exsolution and gas invasion in peat: Towards a comprehensive modelling framework

    No full text
    Increasing climatic stresses accelerate the degradation of highly organic soils, like peat, by increasing their drying rate above the water table and their decomposition rate under water. Recent experimental studies provide evidence of the consequences of these processes on the hydro-mechanical properties of peat. However, modelling the experimental evidence in a comprehensive framework remains challenging, especially in the case of anaerobic degradation, which is accompanied by gas generation, exsolution and expansion, into an initially saturated matrix of soil. In this research study, experimental results from undrained isotropic unloading on artificially gas-charged peat samples are combined with data from drying tests on the same peat, in an attempt to develop a unified framework encompassing the two desaturation processes. As a first approximation, simple compression laws depending on the average stress acting on the soil skeleton are used to simulate the experimental results. The comparison between experimental data and model simulations suggests the possibility of modelling gas expansion similar to the gas invasion process occurring on drying. The modelling approach, stemming from unsaturated soil mechanics, is meant to offer a possible framework to include the hydro-mechanical consequences of the effects of degradation of peats in the engineering analysis. Accepted author manuscriptGeo-engineerin

    A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression

    Get PDF
    The paper focuses on the hydromechanical behaviour of an unsaturated compacted clayey silt, accounting for fabric changes induced by drying–wetting cycles occurring at low stress levels. The response along isotropic compression and triaxial compression (shear) at constant water content was investigated by laboratory tests on both as-compacted and dried–wetted samples. Compaction induces a microstructural porosity pertinent to clay peds and a macrostructural porosity external to the peds. Drying–wetting cycles decrease the microporosity and increase the macroporosity, which reduces the water retention capacity, increases the compressibility, and promotes higher peak strengths with more brittle behaviour during triaxial compression. A coupled double-porosity elastic–plastic model was formulated to simulate the experimental results. A nonassociated flow rule was defined for the macrostructure, modifying a stress–dilatancy relationship for saturated granular soils to account for the increase in dilatancy with suction observed in the experiments. The average skeleton stress and suction were adopted as stress variables. As correctly predicted by the model, the shear strength at critical state is not significantly influenced by the degree of saturation or by the hydraulic history. On the contrary, the higher peak strength, brittleness, and dilatancy of the dried–wetted samples are mostly explained by their reduced water-retention capacity.Accepted Author ManuscriptGeo-engineerin

    Experimental results on the influence of gas on the mechanical response of peats

    No full text
    Direct observation of gas in peat layers, generated by slow degradation in anoxic conditions, raised concern in the Netherlands about its potential impact on the geotechnical response of dykes founded on peat. To address this issue, an experimental investigation was initiated, aimed at quantifying the main consequences of the presence of gas on the mechanical response of peats. The results of a series of triaxial tests on natural peat samples flushed with carbonated water are presented and discussed. Controlled amounts of gas were exsolved by undrained isotropic unloading, and the samples were sheared under undrained conditions. During gas exsolution, the samples suffered volumetric expansion, at a rate which is ruled by the relative compressibility of the fluid and the soil skeleton. The gas in the pore fluid dominates the stress-strain response upon undrained shearing, causing lower excess pore pressure compared to fully saturated samples. The experimental results suggest that local fabric changes occur during gas exsolution. However, for the amounts of gas investigated, these fabric changes seem to be almost reversible upon compression. Although the ultimate shear strength is hardly affected by gas, the reduction in the mobilised shear strength at given axial strain thresholds is dramatic, compared to fully saturated samples. The study suggests that the presence of gas must be cautiously accounted for at low stresses, when a reference stiffness is chosen for serviceability limit states, and when operative shear strength definitions, based on mobilised strength for given strain thresholds, are chosen in the assessment of geotechnical structures on peats.Accepted Author ManuscriptGeo-engineerin
    corecore