24 research outputs found

    An extension of Lobachevsky formula

    Full text link
    In this paper we extend the Dirichlet integral formula of Lobachevsky. Let f(x)f(x) be a continuous function and satisfy in the Ο€\pi-periodic assumption f(x+Ο€)=f(x)f(x+\pi)=f(x), and f(Ο€βˆ’x)=f(x)f(\pi-x)=f(x), 0≀x<∞0\leq x<\infty . If the integral ∫0∞sin⁑4xx4f(x)dx\int_0^\infty \frac{\sin^4x}{x^4}f(x)dx defined in the sense of the improper Riemann integral, then we show the following equality ∫0∞sin⁑4xx4f(x)dx=∫0Ο€2f(t)dtβˆ’23∫0Ο€2sin⁑2tf(t)dt\int_0^\infty \frac{\sin^4x}{x^4}f(x)dx=\int_0^{\frac{\pi}{2} }f(t)dt-\frac{2}{3}\int_0^{\frac{\pi}{2} }\sin^2tf(t)dt hence if we take f(x)=1f(x)=1, then we have ∫0∞sin⁑4xx4dx=Ο€3\int_0^\infty \frac{\sin^4x}{x^4}dx=\frac{\pi}{3} Moreover, we give a method for computing ∫0∞sin⁑2nxx2nf(x)dx\int_0^\infty \frac{\sin^{2n}x}{x^{2n}}f(x)dx for n∈Nn\in \mathbb NComment: Paper is re-written with new presentation and new results adde
    corecore