6 research outputs found

    The Pyrolytic Profile of Lyophilized and Deep-Frozen Compact Part of the Human Bone

    Get PDF
    Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-) associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts

    The Chemical Composition of Endotoxin Isolated from Intestinal Strain of Desulfovibrio desulfuricans

    Get PDF
    Desulfovibrio desulfuricans anaerobes are constituents of human alimentary tract microflora. There are suggestions that they take part in the pathogenesis of periodontitis and some gastrointestinal inflammatory disorders, such as ulcerative colitis or Crohn's disease. Endotoxin is one of Gram-negative bacteria cellular components that influence these microorganisms pathogenicity. Endotoxin is a lipid-polisaccharide heteropolymer consisting of three elements: lipid A, core oligosaccharide, and O-specific polysaccharide, also called antigen-O. The biological activity of lipopolysaccharide (LPS) is determined by its structure. In this study, we show that rhamnose, fucose, mannose, glucose, galactose, heptose, and 2-keto-3-deoxyoctulosonic acid (Kdo) are constituents of D. desulfuricans endotoxin oligosaccharide core and O-antigen. Lipid A of these bacteria LPS is composed of glucosamine disaccharide substituted by 3-acyloxyacyl residues: ester-bound 3-(dodecanoyloxy)tetradecanoic, 3-(hexadecanoyloxy)tetradecanoic acid, and amide-bound 3-(tetradecanoyloxy)tetradecanoic acid

    Chemical composition of Desulfovibrio desulfuricans lipid A

    Get PDF
    Lipopolysaccharides also called endotoxins are an integral component of the outer membrane of Gram-negative bacteria. When released from the bacterial surface, they interact with a host immune system, triggering excessive inflammatory response. Lipid A is the biologically most active part of endotoxin, and its activity is modulated by the quantity, quality and arrangement of its fatty acids. Desulfovibrio desulfuricans is sulfate-reducing, Gram-negative bacterium that is supposed to be opportunistic pathogens of humans and animals. In the present study, chemical composition of lipid A from various strains of D. desulfuricans was analyzed by gas chromatography/mass spectrometry. It was found that the fatty acid component of the lipid A contains dodecanoic, tetradecanoic, 3-hydroxytetradecanoic and hexadecanoic acids, and its carbohydrate core is composed of glucosamine. The analysis of 3-acyloxyacyl residue of the lipid A revealed the presence of amide-bound 3-(dodecanoyloxy)tetradecanoic and 3-(hexadecanoyloxy)tetradecanoic acids and ester-bound 3-(tetradecanoyloxy)tetradecanoic acid. It was concluded that both fatty acid and 3-acyloxyacyl residue profiles of the lipid A from the studied bacteria were similar to those of E. coli and S.enterica

    Utilization of host iron sources by bacteria Desulfovibrio desulfuricans

    No full text
    Pathogenicity of Gram-negative bacteria is determined by their ability of iron uptake from environmental and human reserve sources. To acquire this element microorganisms synthesize siderophores, iron chelating structures that allow them to utilize various host iron sources such as hemoglobin, myoglobin, ferritin, transferrin and lactoferrin. Host iron sources utilized by Desulfovibrio desulfuricans (D. desulfuricans) are still unrecognized. These microorganisms colonize a human alimentary tract as a component of the natural intestinal microfl ora. However, their involvement in the pathogenesis of intestinal disorders, such as Crohn’s disease or ulcerative colitis, cannot be excluded. The purpose of this study was to analyze the ability of these bacteria to utilize several body iron sources. The aim of the study was realized by the evaluation of number of colonies of pre-starved D. desulfuricans strains after 48 hour culturing on pyruvate Postgate’s medium supplemented with 1.5 mg/dm3 of the iron source (human hemoglobin and transferrin, bovine hemoglobin, transferrin, lactoferrin and hemin, equine myoglobin and cytochrome c). The control cells were cultured on medium devoid of iron. Most of the tested strains D. desulfuricans (except for DV/B) utilized iron from a wide variety host sources. The interstrain diversity of bacterial growth in the presence of each of iron sources was observed. Soil strain DSM 642 was the slowest proliferating one on medium containing both human and bovine transferrin. Therefore, this strain does not utilize iron from both iron sources. The most intensive growth was observed with DV/I and DV/I/1 intestinal strains on medium supplemented with equine myoglobin and cytochrome c, and bovine lactoferrin, whereas DV/H strain proliferated the most on medium containing both human and bovine hemoglobin.Patogenność bakterii Gram-ujemnych jest uwarunkowana ich zdolnością pozyskiwania żelaza ze środowiska oraz rezerw zainfekowanego makroorganizmu. W tym celu bakterie syntetyzują siderofory, czyli układy chelatujące żelazo, które umożliwiają im wykorzystywanie jego hemowych i niehemowych źródeł ustrojowych, takich jak hemoglobina, mioglobina, ferrytyna, transferyna i laktoferyna. Dotychczas nie poznano ustrojowych źródeł żelaza wykorzystywanych przez bakterie Desulfovibrio desulfuricans (D. desulfuricans). Gatunek ten kolonizuje m.in. przewód pokarmowy człowieka, stanowiąc składnik fi zjologicznej mikrofl ory jelita. Nie wyklucza się jednak udziału tych bakterii w etiopatogenezie niektórych schorzeń tego narządu, takich jak choroba Crohna czy wrzodziejące zapalenie jelita grubego. Celem podjętych badań była analiza możliwości wykorzystywania przez bakterie D. desulfuricans różnych ustrojowych źródeł żelaza. Zamierzenie to realizowano oceniając po 48 godzinach hodowli liczbę kolonii wygłodzonych izolatów D. desulfuricans na pirogronianowej pożywce Postgate’a wzbogaconej o 1,5 mg/dm3 określonego źródła żelaza (hemoglobiny i transferyny ludzkiej, hemoglobiny, transferyny, laktoferyny i heminy bydlęcej, mioglobiny i cytochromu c końskiego). Hodowlę kontrolną stanowiły bakterie namnażane się na podłożu z obniżoną ilością żelaza. Większość izolatów D. desulfuricans (oprócz DV/B) pozyskiwała żelazo z różnych źródeł ustrojowych, przy czym stwierdzono ich międzyszczepowe zróżnicowanie wzrostu w obecności każdej z żelazoprotein i heminy. Najwolniej namnażał się glebowy izolat DSM 642 na podłożu zawierającym transferynę ludzką i bydlęcą, nie wykorzystując żelaza zawartego w tym ustrojowym źródle. Wśród wszystkich badanych bakterii najintensywniej namnażały się dzikie szczepy DV/I i DV/I/1 na podłożach z końską mioglobiną i cytochromem c oraz laktoferyną bydlęcą oraz DV/H w obecności ludzkiej i bydlęcej hemoglobiny
    corecore