203 research outputs found

    Recent advances in antiviral drug development towards dengue virus

    Get PDF
    Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed

    Flavivirus Cell Entry and Membrane Fusion

    Get PDF
    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advances in the understanding of flavivirus cell entry with specific emphasis on the recent study of Zaitseva and coworkers, indicating that anionic lipids might play a crucial role in the fusion process of dengue virus [1]

    Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery

    Get PDF
    Chikungunya virus (CHIKV) is a human pathogen that delivers its genome to the host cell cytoplasm through endocytic low pH-activated membrane fusion mediated by class-II fusion proteins. Though structures of prefusion, icosahedral CHIKV are available, structural characterization of virion interaction with membranes has been limited. Here, we have used cryo-electron tomography to visualize CHIKV's complete membrane fusion pathway, identifying key intermediary glycoprotein conformations coupled to membrane remodeling events. Using sub-tomogram averaging, we elucidate features of the low pH-exposed virion, nucleocapsid and full-length E1-glycoprotein's post-fusion structure. Contrary to class-I fusion systems, CHIKV achieves membrane apposition by protrusion of extended E1-glycoprotein homotrimers into the target membrane. The fusion process also features a large hemifusion diaphragm that transitions to a wide pore for intact nucleocapsid delivery. Our analyses provide comprehensive ultrastructural insights into the class-II virus fusion system function and direct mechanistic characterization of the fundamental process of protein-mediated membrane fusion

    Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway

    Get PDF
    Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity. IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV

    Cooperative Chikungunya Virus Membrane Fusion and Its Substoichiometric Inhibition by CHK-152 Antibody

    Get PDF
    Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody

    Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2

    Get PDF
    A dysregulated or exacerbated inflammatory response is thought to be the key driver of the pathogenesis of severe disease caused by the mosquito-borne dengue virus (DENV). Compounds that restrict virus replication and modulate the inflammatory response could thus serve as promising therapeutics mitigating the disease pathogenesis. We and others have previously shown that macrophages, which are important cellular targets for DENV replication, differentiated in the presence of bioactive vitamin D (VitD3) are less permissive to viral replication, and produce lower levels of pro-inflammatory cytokines. Therefore, we here evaluated the extent and kinetics of innate immune responses of DENV-2 infected monocytes differentiated into macrophages in the presence (D(3)-MDMs) or absence of VitD3 (MDMs). We found that D(3)-MDMs expressed lower levels of RIG I, Toll-like receptor (TLR)3, and TLR7, as well as higher levels of SOCS-1 in response to DENV-2 infection. D(3)-MDMs produced lower levels of reactive oxygen species, related to a lower expression of TLR9. Moreover, although VitD3 treatment did not modulate either the expression of IFN-Ξ± or IFN-Ξ², higher expression of protein kinase R (PKR) and 2β€²-5β€²-oligoadenylate synthetase 1 (OAS1) mRNA were found in D(3)-MDMs. Importantly, the observed effects were independent of reduced infection, highlighting the intrinsic differences between D(3)-MDMs and MDMs. Taken together, our results suggest that differentiation of MDMs in the presence of VitD3 modulates innate immunity in responses to DENV-2 infection

    Chikungunya virus requires an intact microtubule network forΒ efficient viral genome delivery

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus, which has rapidly spread around the globe thereby causing millions of infections. CHIKV is an enveloped virus belonging to the Togaviridae family and enters its host cell primarily via clathrin-mediated endocytosis. Upon internalization, the endocytic vesicle containing the virus particle moves through the cell and delivers the virus to early endosomes where membrane fusion is observed. Thereafter, the nucleocapsid dissociates and the viral RNA is translated into proteins. In this study, we examined the importance of the microtubule network during the early steps of infection and dissected the intracellular trafficking behavior of CHIKV particles during cell entry. We observed two distinct CHIKV intracellular trafficking patterns prior to membrane hemifusion. Whereas half of the CHIKV virions remained static during cell entry and fused in the cell periphery, the other half showed fast-directed microtubule-dependent movement prior to delivery to Rab5-positive early endosomes and predominantly fused in the perinuclear region of the cell. Disruption of the microtubule network reduced the number of infected cells. At these conditions, membrane hemifusion activity was not affected yet fusion was restricted to the cell periphery. Furthermore, follow-up experiments revealed that disruption of the microtubule network impairs the delivery of the viral genome to the cell cytosol. We therefore hypothesize that microtubules may direct the particle to a cellular location that is beneficial for establishing infection or aids in nucleocapsid uncoating

    Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro

    Get PDF
    In recent decades, chikungunya virus (CHIKV) has re-emerged, leading to outbreaks of chikungunya fever in Africa, Asia and Central and South America. The disease is characterized by a rapid onset febrile illness with (poly)arthralgia, myalgia, rashes, headaches and nausea. In 30 to 40% of the cases, CHIKV infection causes persistent (poly)arthralgia, lasting for months or even years after initial infection. Despite the drastic re-emergence and clinical impact there is no vaccine nor antiviral compound available to prevent or control CHIKV infection. Here, we evaluated the antiviral potential of tomatidine towards CHIKV infection. We demonstrate that tomatidine potently inhibits virus particle production of multiple CHIKV strains. Time-of -addition experiments in Huh7 cells revealed that tomatidine acts at a post-entry step of the virus replication cycle. Furthermore, a marked decrease in the number of CHIKV-infected cells was seen, suggesting that tomatidine predominantly acts early in infection yet after virus attachment and cell entry. Antiviral activity was still detected at 24 hours post-infection, indicating that tomatidine controls multiple rounds of CHIKV replication. Solasodine and sarsasapogenin, two structural derivatives of tomatidine, also showed strong albeit less potent antiviral activity towards CHIKV. In conclusion, this study identifies tomatidine as a novel compound to combat CHIKV infection in vitro

    Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells

    Get PDF
    Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments
    • …
    corecore