39 research outputs found
Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells
At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated MS cases and 97 healthy controls and then performed Cis expression quantitative trait loci mapping studies using additive linear models. We describe MS risk expression quantitative trait loci associations for 129 distinct genes. By extending these models to include an interaction term between genotype and phenotype, we identify MS risk SNPs with opposing effects on gene expression in cases compared with controls, namely, rs2256814 MYT1 in CD4 cells (q = 0.05) and rs12087340 RF00136 in monocyte cells (q = 0.04). The rs703842 SNP was also associated with a differential effect size on the expression of the METTL21B gene in CD8 cells of MS cases relative to controls (q = 0.03). Our study provides a detailed map of MS risk loci that function by regulating gene expression in cell types relevant to MS
Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination
C1 - Journal Articles RefereedThe TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 +/- 3.1 vs 11.8 +/- 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor alpha mRNA expression was reduced approximately 48%). In Gas6-/- mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-pi (glutathione S-transferase-pi)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6-/- mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6-/- mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage
Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis
BACKGROUND: Neuroinflammation regulates both disease pathogenesis and repair in multiple sclerosis. In early multiple sclerosis lesion development, neuroinflammation causes demyelination and axonal injury, the likely final common determinant of disability. Here we report the identification of a novel neuroinflammatory mediator, Disabled-2 (Dab2). Dab2 is an intracellular adaptor protein with previously unknown function in the central nervous system. RESULTS: We report that Dab2 is up-regulated in lesional macrophages/microglia in the spinal cord in murine experimental autoimmune encephalomyelitis, a model of multiple sclerosis. We demonstrate that dab2 expression is positively correlated with experimental autoimmune encephalomyelitis disease severity during the acute disease phase. Furthermore, dab2-deficient mice have a less severe experimental autoimmune encephalomyelitis disease course and suffer less neuroinflammation and less axonal injury than their wild-type littermates. We demonstrate that dab2 expression is strongly associated with the expression of inducible nitric oxide synthase. We further demonstrate that Dab2 is expressed at the protein level by macrophages in early acute human multiple sclerosis lesions and that this correlates with axonal injury. CONCLUSIONS: Together, these results suggest that endogenous Dab2 exacerbates central nervous system inflammation, potentially acting to up-regulate reactive oxygen species expression in macrophages and microglia, and that it is of potential pathogenic relevance in Multiple Sclerosis