602 research outputs found
Inhomogeneous tachyon dynamics and the zipper
We study the process of inhomogeneous tachyon condensation in an intersecting
D1- and anti-D1-brane system using an effective tachyon DBI action. By
switching to the Hamiltonian formalism, we numerically solve for the dynamical
evolution of the system at a small intersection angle. We find that the decay
proceeds indefinitely and resembles the action of two zippers moving away from
the intersection point at the speed of light, zipping the branes together and
leaving inhomogeneous tachyon matter behind. We also discuss the range of
validity of our analysis and discuss the relation of the D1-anti-D1 description
of the system to one in terms of an intersecting D1-D1-brane pair.Comment: 23 pages, 12 figures. v2: added references; v3: more references,
published versio
Hyperglycemic conditions modulate connective tissue reorganization by human vascular smooth muscle cells through stimulation of hyaluronan synthesis.
Changes in the extracellular matrix organization within vascular walls are critical events in the process of atherosclerosis including diabetic macroangiopathy. Here, we examined whether glucose can directly modulate connective tissue reorganization by human vascular smooth muscle cells (VSMCs). Using a collagen gel contraction (CGC) assay, we demonstrated that in comparison with normal glucose concentration (5 mM), high glucose concentration (25 mM) inhibits the efficacy of VSMCs to contract collagen gels. With human genome microarrays, we showed a significant increase in the expression of hyaluronan synthase 2 (HAS2) by VSMCs in hyperglycemic conditions. The finding was verified with quantitative real-time polymerase chain reaction, which also revealed that the expression of the other hyaluronan synthesizing enzymes, HAS1 and HAS3, was stimulated concomitantly. A corresponding increase was observed in hyaluronan (HA) production. Treatment of VSMCs either with hyaluronidase or with 4-methylumbelliferone, an inhibitor of HA synthesis, partially restored the diminished CGC efficacy of VSMCs in hyperglycemic conditions. In conclusion, high glucose concentration stimulated HA synthesis by VSMCs and modulated their ability to reorganize collagen-rich matrix. Because HA is known to enhance the development of atherosclerosis and restenosis after percutaneous coronary interventions, our study provides a new potential mechanism whereby hyperglycemia leads to disturbed vascular remodeling in diabetic patients through stimulation of HA synthesis
Anomalous Zero Sound
We show that the anomalous term in the current, recently suggested by Son and
Yamamoto, modifies the structure of the zero sound mode in the Fermi liquid in
a magnetic field.Comment: 14 pages, 2 figure
Flavor-symmetry Breaking with Charged Probes
We discuss the recombination of brane/anti-brane pairs carrying brane
charge in . These configurations are dual to co-dimension one
defects in the super-Yang-Mills description. Due to their
charge, these defects are actually domain walls in the dual gauge theory,
interpolating between vacua of different gauge symmetry. A pair of unjoined
defects each carry localized dimensional fermions and possess a global
flavor symmetry while the recombined brane/anti-brane pairs
exhibit only a diagonal U(N). We study the thermodynamics of this
flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure
Quantum Hall Effect in a Holographic Model
We consider a holographic description of a system of strongly coupled
fermions in 2+1 dimensions based on a D7-brane probe in the background of
D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We
study the system at finite temperature and charge density, and in the presence
of a background magnetic field. We show that Minkowski-like embeddings that
terminate above the horizon describe a family of quantum Hall states with
filling fractions that are parameterized by a single discrete parameter. The
quantization of the Hall conductivity is a direct consequence of the
topological quantization of the fluxes. When the magnetic field is varied
relative to the charge density away from these discrete filling fractions, the
embeddings deform continuously into black-hole-like embeddings that enter the
horizon and that describe metallic states. We also study the thermodynamics of
this system and show that there is a first order phase transition at a critical
temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the
quantitative analysis. The qualitative results and conclusions are unchanged,
with one exception: we show that the quantum Hall state embeddings, which
exist for discrete values of the filling fraction, deform continuously into
metallic state embeddings away from these filling fraction
Holographic zero sound at finite temperature in the Sakai-Sugimoto model
In this paper, we study the fate of the holographic zero sound mode at finite
temperature and non-zero baryon density in the deconfined phase of the
Sakai-Sugimoto model of holographic QCD. We establish the existence of such a
mode for a wide range of temperatures and investigate the dispersion relation,
quasi-normal modes, and spectral functions of the collective excitations in
four different regimes, namely, the collisionless quantum, collisionless
thermal, and two distinct hydrodynamic regimes. For sufficiently high
temperatures, the zero sound completely disappears, and the low energy physics
is dominated by an emergent diffusive mode. We compare our findings to
Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references
added, v3: some clarifications relating to the different regimes added,
matches version accepted for publication in JHEP, v4: corrected typo in eq.
(3.18
Intersecting D4-branes Model of Holographic QCD and Tachyon Condensation
We consider the intersecting D4-brane and anti-D4-brane model of holographic
QCD, motivated by the model that has recently been suggested by Van Raamsdonk
and Whyte. We analyze such D4-branes by the use of the action with a
bi-fundamental ``tachyon'' field, so that we find the classical solutions
describing the intersecting D4-branes and the U-shaped D4-branes. We show that
the ``tachyon'' field in the bulk theory provides a current quark mass and a
quark condensate to the dual gauge theory and that the lowest modes of mesons
obtain mass via tachyon condensation. Then evaluating the properties of a pion,
one can reproduce Gell-Mann-Oakes-Renner relation.Comment: 24 pages, 5 figures; v2: refs. added; v3: discussions on Chern-Simons
terms are adde
First genome-wide association study on rocuronium dose requirements shows association with SLCO1A2
Background: Rocuronium, a common neuromuscular blocking agent, is mainly excreted unchanged in urine (10-25%) and bile ( 70%). Age, sex, liver blood flow, smoking, medical conditions, and ethnic background can affect its pharmacological actions. However, reasons for the wide variation in rocuronium requirements are mostly unknown. We hypothesised that pharmacogenetic factors might explain part of the variation. Methods: One thousand women undergoing surgery for breast cancer were studied. Anaesthesia was maintained with propofol (50-100 mg kg(-1) min(-1)) and remifentanil (0.05-0.25 mg kg(-1) min(-1)). Neuromuscular block was maintained with rocuronium to keep the train-of-four ratio at 0-10%. DNA was extracted from peripheral blood and genotyped with a next-generation genotyping array. The genome-wide association study (GWAS) was conducted using an additive linear regression model with PLINK software. The FINEMAP tool and data from the Genotype-Tissue Expression project v8 were utilised to study the locus further. Results: The final patient population comprised 918 individuals. Of the clinical variables tested, age, BMI, ASA physical status, and total dose of propofol correlated significantly (all P Conclusions: Genetic variation in the gene SLCO1A2, encoding OATP1A2, an uptake transporter, accounted for 4% of the variability in rocuronium consumption. The underlying mechanism remains unknown.Peer reviewe
Winding effects on brane/anti-brane pairs
We study a brane/anti-brane configuration which is separated along a compact
direction by constructing a tachyon effective action which takes into account
transverse scalars. Such an action is relevant in the study of HQCD model of
Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact
circle sets the confinement scale. Our approach is motivated by string theory
orbifold constructions and gives a route to model inhomogeneous tachyon decay.
We illustrate the techniques involved with a relatively simple example of a
harmonic oscillator on a circle. We will then repeat the analysis for the
Sakai-Sugimoto model and show that by integrating out the winding modes will
provide us with a renormalized action with a lower energy than that of
truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published
versio
- …