4 research outputs found

    Limited efficacy of West Nile virus vaccines in large falcons (Falco spp.)

    Get PDF
    International audienceWest Nile virus (WNV) can lead to fatal diseases in raptor species. Unfortunately, there is no vaccine which has been designed specifically for use in breeding stocks of falcons. Therefore the immunogenicity and protective capacity of two commercially available WNV vaccines, both approved for use in horses, were evaluated in large falcons. One vaccine contained adjuvanted inactivated WNV lineage 1 immunogens, while the second represented a canarypox recombinant live virus vector vaccine. The efficacy of different vaccination regimes for these two vaccines was assessed serologically and by challenging the falcons with a WNV strain of homologous lineage 1. Our studies show that the recombinant vaccine conveys a slightly better protection than the inactivated vaccine, but moderate (recombinant vaccine) or weak (inactivated vaccine) side effects were observed at the injection sites. Using the recommended 2-dose regimen, both vaccines elicited only sub-optimal antibody responses and gave only partial protection following WNV challenge. Better results were obtained for both vaccines after a third dose, i.e. alleviation of clinical signs, absence of fatalities and reduction of virus shedding and viraemia. Therefore the consequences of WNV infections in falcons can be clearly alleviated by vaccination, especially if the amended triple administration scheme is used, although side effects at the vaccination site must be accepted

    Use of Competition ELISA for Monitoring of West Nile Virus Infections in Horses in Germany

    No full text
    West Nile virus (WNV) is a mosquito-borne viral pathogen of global importance and is considered to be the most widespread flavivirus in the World. Horses, as dead-end hosts, can be infected by bridge mosquito vectors and undergo either subclinical infections or develop severe neurological diseases. The aim of this study was to detect WNV specific antibodies in horses in Germany as an indicator for an endemic circulation of WNV. Sera from more than 5,000 horses (primarily fallen stock animals) were collected in eight different federal states of Germany from 2010 to 2012. Sera were screened by a competitive ELISA and positive reactions were verified by an indirect IgM ELISA and/or by virus neutralization tests (VNT) for WNV and Tick-borne encephalitis virus (TBEV) in order to exclude cross-reacting antibody reactions. In essence WNV specific antibodies could not be detected in any of the horse sera. Not surprisingly, a small number of sera contained antibodies against TBEV. It is noteworthy that equine sera were often collected from horse carcasses and therefore were of poor quality. Nonetheless, these sera were still suitable for WNV ELISA testing, i.e., they did not produce a high background reaction which is a frequently observed phenomenon. According to these data there is no evidence for indigenous WNV infections in horses in Germany at present
    corecore