3,071 research outputs found
High-Dimensional Inference with the generalized Hopfield Model: Principal Component Analysis and Corrections
We consider the problem of inferring the interactions between a set of N
binary variables from the knowledge of their frequencies and pairwise
correlations. The inference framework is based on the Hopfield model, a special
case of the Ising model where the interaction matrix is defined through a set
of patterns in the variable space, and is of rank much smaller than N. We show
that Maximum Lik elihood inference is deeply related to Principal Component
Analysis when the amp litude of the pattern components, xi, is negligible
compared to N^1/2. Using techniques from statistical mechanics, we calculate
the corrections to the patterns to the first order in xi/N^1/2. We stress that
it is important to generalize the Hopfield model and include both attractive
and repulsive patterns, to correctly infer networks with sparse and strong
interactions. We present a simple geometrical criterion to decide how many
attractive and repulsive patterns should be considered as a function of the
sampling noise. We moreover discuss how many sampled configurations are
required for a good inference, as a function of the system size, N and of the
amplitude, xi. The inference approach is illustrated on synthetic and
biological data.Comment: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
(2011) to appea
Viscous diffusion and photoevaporation of stellar disks
The evolution of a stellar disk under the influence of viscous evolution,
photoevaporation from the central source, and photoevaporation by external
stars is studied. We take the typical parameters of TTSs and the Trapezium
Cluster conditions. The photoionizing flux from the central source is assumed
to arise both from the quiescent star and accretion shocks at the base of
stellar magnetospheric columns, along which material from the disk accretes.
The accretion flux is calculated self-consistently from the accretion mass loss
rate. We find that the disk cannot be entirely removed using only viscous
evolution and photoionization from the disk-star accretion shock. However, when
FUV photoevaporation by external massive stars is included the disk is removed
in 10^6 -10^7yr; and when EUV photoevaporation by external massive stars is
included the disk is removed in 10^5 - 10^6yr.
An intriguing feature of photoevaporation by the central star is the
formation of a gap in the disk at late stages of the disk evolution. As the gap
starts forming, viscous spreading and photoevaporation work in resonance.
There is no gap formation for disks nearby external massive stars because the
outer annuli are quickly removed by the dominant EUV flux. On the other hand,
at larger, more typical distances (d>>0.03pc) from the external stars the flux
is FUV dominated. As a consequence, the disk is efficiently evaporated at two
different locations; forming a gap during the last stages of the disk
evolution.Comment: 27 pages, 11 figures, accepted for publication in Ap
A Critique of Current Magnetic-Accretion Models for Classical T-Tauri Stars
Current magnetic-accretion models for classical T-Tauri stars rely on a
strong, dipolar magnetic field of stellar origin to funnel the disk material
onto the star, and assume a steady-state. In this paper, I critically examine
the physical basis of these models in light of the observational evidence and
our knowledge of magnetic fields in low-mass stars, and find it lacking.
I also argue that magnetic accretion onto these stars is inherently a
time-dependent problem, and that a steady-state is not warranted.
Finally, directions for future work towards fully-consistent models are
pointed out.Comment: 2 figure
The cool wake around 4C 34.16 as seen by XMM-Newton
We present XMM-Newton observations of the wake-radiogalaxy system 4C34.16,
which shows a cool and dense wake trailing behind 4C34.16's host galaxy. A
comparison with numerical simulations is enlightening, as they demonstrate that
the wake is produced mainly by ram pressure stripping during the galactic
motion though the surrounding cluster. The mass of the wake is a substantial
fraction of the mass of an elliptical galaxy's X-ray halo. This observational
fact supports a wake formation scenario similar to the one demonstrated
numerically by Acreman et al (2003): the host galaxy of 4C34.16 has fallen into
its cluster, and is currently crossing its central regions. A substantial
fraction of its X-ray halo has been stripped by ram pressure, and remains
behind to form the galaxy wake.Comment: 9 pages, 6 figures, accepted for publication in MNRA
Hitting Time of Quantum Walks with Perturbation
The hitting time is the required minimum time for a Markov chain-based walk
(classical or quantum) to reach a target state in the state space. We
investigate the effect of the perturbation on the hitting time of a quantum
walk. We obtain an upper bound for the perturbed quantum walk hitting time by
applying Szegedy's work and the perturbation bounds with Weyl's perturbation
theorem on classical matrix. Based on the definition of quantum hitting time
given in MNRS algorithm, we further compute the delayed perturbed hitting time
(DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the
upper bound for DPQHT is actually greater than the difference between the
square root of the upper bound for a perturbed random walk and the square root
of the lower bound for a random walk.Comment: 9 page
Towards a Holistic View of the Heating and Cooling of the Intracluster Medium
(Abridged) X-ray clusters are conventionally divided into two classes: "cool
core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little
attention has been given to the origins of this dichotomy and, in particular,
to the energetics and thermal histories of the two classes. We develop a model
for the entropy profiles of clusters starting from the configuration
established by gravitational shock heating and radiative cooling. At large
radii, gravitational heating accounts for the observed profiles and their
scalings well. However, at small and intermediate radii, radiative cooling and
gravitational heating cannot be combined to explain the observed profiles of
either type of cluster. The inferred entropy profiles of NCC clusters require
that material is preheated prior to cluster collapse in order to explain the
absence of low entropy (cool) material in these systems. We show that a similar
modification is also required in CC clusters in order to match their properties
at intermediate radii. In CC clusters, this modification is unstable, and an
additional process is required to prevent cooling below a temperature of a few
keV. We show that this can be achieved by adding a self-consistent AGN feedback
loop in which the lowest-entropy, most rapidly cooling material is heated so
that it rises buoyantly to mix with material at larger radii. The resulting
model does not require fine tuning and is in excellent agreement with a wide
variety of observational data. Some of the other implications of this model are
briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating
energetics extended, results unchange
Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articleâs title, journal citation, and DOI.The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.EPSR
Clonal interference and Muller's ratchet in spatial habitats
Competition between independently arising beneficial mutations is enhanced in
spatial populations due to the linear rather than exponential growth of clones.
Recent theoretical studies have pointed out that the resulting fitness dynamics
is analogous to a surface growth process, where new layers nucleate and spread
stochastically, leading to the build up of scale-invariant roughness. This
scenario differs qualitatively from the standard view of adaptation in that the
speed of adaptation becomes independent of population size while the fitness
variance does not. Here we exploit recent progress in the understanding of
surface growth processes to obtain precise predictions for the universal,
non-Gaussian shape of the fitness distribution for one-dimensional habitats,
which are verified by simulations. When the mutations are deleterious rather
than beneficial the problem becomes a spatial version of Muller's ratchet. In
contrast to the case of well-mixed populations, the rate of fitness decline
remains finite even in the limit of an infinite habitat, provided the ratio
between the deleterious mutation rate and the square of the
(negative) selection coefficient is sufficiently large. Using again an analogy
to surface growth models we show that the transition between the stationary and
the moving state of the ratchet is governed by directed percolation
An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I
We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz
(Band 3) continuum survey of the complete population of dense cores in the
Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19
different target fields. All previously known Class 0 and Class I protostars in
Chamaeleon I are detected, whereas all of the 56 starless cores in our sample
are undetected. We show that the Spitzer+Herschel census of protostars in
Chamaeleon I is complete, with the rate at which protostellar cores have been
misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic
observations to show that starless cores collapsing following the turbulent
fragmentation scenario are detectable by our ALMA observations when their
central densities exceed ~10^8 cm^-3, with the exact density dependent on the
viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to
central densities at least as high as 10^10 cm^-3. Our starless core
non-detections are used to infer that either the star formation rate is
declining in Chamaeleon I and most of the starless cores are not collapsing,
matching the findings of previous studies, or that the evolution of starless
cores are more accurately described by models that develop less substructure
than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert
spheres. We outline future work necessary to distinguish between these two
possibilities.Comment: Accepted by Ap
Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors
We estimate the quantum state of a light beam from results of quantum
homodyne measurements performed on identically prepared pulses. The state is
represented through the Wigner function, a ``quasi-probability density'' on
which may take negative values and must respect intrinsic
positivity constraints imposed by quantum physics. The data consists of
i.i.d. observations from a probability density equal to the Radon transform of
the Wigner function. We construct an estimator for the Wigner function, and
prove that it is minimax efficient for the pointwise risk over a class of
infinitely differentiable functions. A similar result was previously derived by
Cavalier in the context of positron emission tomography. Our work extends this
result to the space of smooth Wigner functions, which is the relevant parameter
space for quantum homodyne tomography.Comment: 15 page
- âŠ