5,094 research outputs found

    Cyanobacteria blooms cannot be controlled by effective microorganisms (EM) from mud- or Bokashi-balls

    Get PDF
    In controlled experiments, the ability of ‘‘Effective Microorganisms (EM, in the form of mudballs or Bokashi-balls)’’ was tested for clearing waters from cyanobacteria. We found suspensions of EM-mudballs up to 1 g l-1 to be ineffective in reducing cyanobacterial growth. In all controls and EM-mudball treatments up to 1 g l-1 the cyanobacterial chlorophyll-a (Chl-a) concentrations increased within 4 weeks from&120 to 325–435 lg l-1. When pieces of EM-mudballs (42.5 g) were added to 25-l lake water with cyanobacteria, no decrease of cyanobacteria as compared to untreated controls was observed. In contrast, after 4 weeks cyanobacterial Chl-a concentrations were significantly higher in EM-mudball treatments (52 lg l-1) than in controls (20 lg l-1). Only when suspensions with extremely high EM-mudball concentrations were applied (i.e., 5 and 10 g l-1), exceeding the recommended concentrations by orders of magnitude, cyanobacterial growth was inhibited and a bloom forming concentration was reduced strongly. In these high dosing treatments, the oxygen concentration dropped initially to very low levels of 1.8 g l-1. This was most probably through forcing strong light limitation on the cyanobacteria caused by the high amount of clay and subsequent high turbidity of the water. Hence, this study yields no support for the hypothesis that EM is effective in preventing cyanobacterial proliferation or in terminating blooms. We consider EM products to be ineffective because they neither permanently bind nor remove phosphorus from eutroficated systems, they have no inhibiting effect on cyanobacteria, and they could even be an extra source of nutrients

    Colliding Winds in Low-Mass Binary Star Systems: wind interactions and implications for habitable planets

    Full text link
    Context. In binary star systems, the winds from the two components impact each other, leading to strong shocks and regions of enhanced density and temperature. Potentially habitable circumbinary planets must continually be exposed to these interactions regions. Aims. We study, for the first time, the interactions between winds from low-mass stars in a binary system, to show the wind conditions seen by potentially habitable circumbinary planets. Methods. We use the advanced 3D numerical hydrodynamic code Nurgush to model the wind interactions of two identical winds from two solar mass stars with circular orbits and a binary separation of 0.5 AU. As input into this model, we use a 1D hydrodynamic simulation of the solar wind, run using the Versatile Advection Code. We derive the locations of stable and habitable orbits in this system to explore what wind conditions potentially habitable planets will be exposed to during their orbits. Results. Our wind interaction simulations result in the formation of two strong shock waves separated by a region of enhanced density and temperature. The wind-wind interaction region has a spiral shape due to Coriolis forces generated by the orbital motions of the two stars. The stable and habitable zone in this system extends from approximately 1.4 AU to 2.4 AU. (TRUNCATED)Comment: 15 pages, 11 figures, to be published in A&

    Accelerator performance analysis of the Fermilab Muon Campus

    Full text link
    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstream beam line optics, as well as transport of muon polarization. We finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.Comment: 10 p

    Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    Full text link
    The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M_E, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure

    The effect of a strong external radiation field on protostellar envelopes in Orion

    Full text link
    We discuss the effects of an enhanced interstellar radiation field (ISRF) on the observables of protostellar cores in the Orion cloud region. Dust radiative transfer is used to constrain the envelope physical structure by reproducing SCUBA 850 micron emission. Previously reported 13CO, C17O and H2CO line observations are reproduced through detailed Monte Carlo line radiative transfer models. It is found that the 13CO line emission is marginally optically thick and sensitive to the physical conditions in the outer envelope. An increased temperature in this region is needed in order to reproduce the 13CO line strengths and it is suggested to be caused by a strong heating from the exterior, corresponding to an ISRF in Orion 10^3 times stronger than the "standard" ISRF. The typical temperatures in the outer envelope are higher than the desorption temperature for CO. The C17O emission is less sensitive to this increased temperature but rather traces the bulk envelope material. The data are only fit by a model where CO is depleted, except in the inner and outermost regions where the temperature increases above 30-40 K. The fact that the temperatures do not drop below approximately 25 K in any of the envelopes whereas a significant fraction of CO is frozen-out suggest that the interstellar radiation field has changed through the evolution of the cores. The H2CO lines are successfully reproduced in the model of an increased ISRF with constant abundances of 3-5x10^{-10}.Comment: 11 pages, 10 figures. Accepted for publication in A&

    Molecular line contamination in the SCUBA-2 450 {\mu}m and 850 {\mu}m continuum data

    Get PDF
    Observations of the dust emission using millimetre/submillimetre bolometer arrays can be contaminated by molecular line flux, such as flux from 12CO. As the brightest molecular line in the submillimetre, it is important to quantify the contribution of CO flux to the dust continuum bands. Conversion factors were used to convert molecular line integrated intensities to flux detected by bolometer arrays in mJy per beam. These factors were calculated for 12CO line integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud complex to quantify the respective 12CO flux contribution to the 850 {\mu}m dust continuum emission. Sources with high molecular line contamination were analysed in further detail for molecular outflows and heating by nearby stars to determine the cause of the 12CO contribution. The majority of sources had a 12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular outflows, the 12CO can dominate the source dust continuum (up to 79 per cent contamination) with 12CO fluxes reaching \sim 68 mJy per beam.Comment: Accepted 2012 April 19 for publication in MNRAS. 21 pages, 13 figures, 3 table

    Loss of expression of ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN

    Get PDF
    Repair of double strand DNA breaks (DSBs) is pivotal in maintaining normal cell division and disruption of this system has been shown to be a key factor in carcinogenesis. Loss of expression of the DSB repair proteins have previously been shown to be associated with poorer survival in colorectal cancer. We wished to ascertain the relationship of altered expression of the DSB repair proteins γ-H2AX (gamma-H2AX), ATM and Ku70 with biological and clinico-pathological features of colorectal cancer. 908 tumours from the VICTOR clinical trial of stage II/III colorectal cancer were analysed for expression of γ-H2AX, ATM and Ku70 using immunohistochemistry. Expression levels were correlated with CIN and with diseasefree survival, correcting for microsatellite instability, BRAF/KRAS mutation status, Dukes stage, chemo/radiotherapy, age, gender and tumour location. Down-regulated Ku70 expression was associated with chromosomal instability (p=0.029) in colorectal cancer. Reduced ATM expression was an independent marker of poor disease-free survival (HR=1.67, 95% CI 1.11-2.50, p=0.015). For Ku70, further studies are required to investigate the potential relationship of non-homologous end joining with chromosomal instability. Loss of ATM expression might serve as a biomarker of poor prognosis in colorectal cancer

    Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity

    Get PDF
    Abstract Background Lowering oxygen from atmospheric level (hyperoxia) to the physiological level (physioxia) of articular cartilage promotes mesenchymal stem cell (MSC) chondrogenesis. However, the literature is equivocal regarding the benefits of physioxic culture on preventing hypertrophy of MSC-derived chondrocytes. Articular cartilage progenitors (ACPs) undergo chondrogenic differentiation with reduced hypertrophy marker expression in hyperoxia but have not been studied in physioxia. This study sought to delineate the effects of physioxic culture on both cell types undergoing chondrogenesis. Methods MSCs were isolated from human bone marrow aspirates and ACP clones were isolated from healthy human cartilage. Cells were differentiated in pellet culture in physioxia (2 % oxygen) or hyperoxia (20 % oxygen) over 14 days. Chondrogenesis was characterized by biochemical assays and gene and protein expression analysis. Results MSC preparations and ACP clones of high intrinsic chondrogenicity (termed high-GAG) produced abundant matrix in hyperoxia and physioxia. Poorly chondrogenic cells (low-GAG) demonstrated a significant fold-change matrix increase in physioxia. Both high-GAG and low-GAG groups of MSCs and ACPs significantly upregulated chondrogenic genes; however, only high-GAG groups had a concomitant decrease in hypertrophy-related genes. High-GAG MSCs upregulated many common hypoxia-responsive genes in physioxia while low-GAG cells downregulated most of these genes. In physioxia, high-GAG MSCs and ACPs produced comparable type II collagen but less type I collagen than those in hyperoxia. Type X collagen was detectable in some ACP pellets in hyperoxia but reduced or absent in physioxia. In contrast, type X collagen was detectable in all MSC preparations in hyperoxia and physioxia. Conclusions MSC preparations and ACP clones had a wide range of chondrogenicity between donors. Physioxia significantly enhanced the chondrogenic potential of both ACPs and MSCs compared with hyperoxia, but the magnitude of response was inversely related to intrinsic chondrogenic potential. Discrepancies in the literature regarding MSC hypertrophy in physioxia can be explained by the use of low numbers of preparations of variable chondrogenicity. Physioxic differentiation of MSC preparations of high chondrogenicity significantly decreased hypertrophy-related genes but still produced type X collagen protein. Highly chondrogenic ACP clones had significantly lower hypertrophic gene levels, and there was little to no type X collagen protein in physioxia, emphasizing the potential advantage of these cells
    • …
    corecore