2 research outputs found

    Imaging Androgen Receptors in Breast Cancer with (18)F-fluoro-5α-dihydrotestosterone-PET: A Pilot Study

    Get PDF
    Most breast cancers express androgen receptors (AR). This prospective imaging sub-study explored imaging AR with (18)F-fluoro-5α-dihydrotestosterone (FDHT)-PET in patients with metastatic breast cancer (MBC) receiving selective AR modulation (SARM) therapy (GTx-024, GTx, Inc). Methods: 11 post-menopausal women with estrogen receptor positive MBC underwent FDHT-PET/CT at baseline, 6, and 12 weeks after starting SARM therapy. Abnormal tumor FDHT uptake was quantified using maximum SUV (SUVmax). AR status was determined from tumor biopsy specimens. FDHT-SUVmax percent change between scans was calculated. Best overall response was categorized as clinical benefit (CB: non-progressive disease [PD]), or PD using RECIST 1.1. Results: Median baseline FDHT-SUVmax was 4.1 (range 1.4-5.9) for AR+ tumors versus 2.3 (range 1.5-3.2) for AR- tumors (p=0.22). Quantitative AR expression and baseline FDHT uptake were weakly correlated (Pearson rho=0.39, p=0.30). Seven participants with CB at 12 weeks tended to have larger declines in FDHT uptake compared to those with PD at both 6 (median decline, range: -26.8%, -42.9 to -14.1% vs. -3.7%, -31% to +29%, respectively, p=0.11) and 12 weeks (median decline, range: -35.7%, -69.5 to -7.7% vs. -20.1%, -26.6% to +56.5%, respectively, p=0.17) after starting GTx-024. Conclusion: This hypothesis-generating data suggests that FDHT-PET/CT is worth further study as an imaging biomarker for evaluating response of MBC to SARM therapy and reiterates the feasibility of including molecular imaging in multidisciplinary therapeutic trials

    Report on the PET/CT Image-Based Radiation Dosimetry of [(18)F]FDHT in Women, a Validated Imaging Agent with New Applications for Evaluation of Androgen Receptor Status in Women with Metastatic Breast Cancer

    No full text
    In a prospective clinical trial, [(18)F]fluoro-5α-dihydrotestosterone ([(18)F]FDHT), the radiolabeled analog of the androgen dihydrotestosterone, was used as a PET/CT imaging agent for in vivo assessment of metastatic androgen receptor-positive breast cancer in postmenopausal women. To our knowledge, this article presents the first report of PET/CT image-based radiation dosimetry of [(18)F]FDHT in women. Methods: [(18)F]FDHT PET/CT imaging was performed on a cohort of 11 women at baseline before the start of therapy and at 2 additional time points during selective androgen receptor modulator (SARM) therapy for androgen receptor-positive breast cancer. Volumes of interest (VOIs) were placed over the whole body and within source organs seen on the PET/CT images, and the time-integrated activity coefficients of [(18)F]FDHT were derived. The time-integrated activity coefficients for the urinary bladder were calculated using the dynamic urinary bladder model in OLINDA/EXM software, with biologic half-life for urinary excretion derived from VOI measurements of the whole body in postvoid PET/CT images. The time-integrated activity coefficients for all other organs were calculated from VOI measurements in the organs and the physical half-life of (18)F. Organ dose and effective dose calculations were then performed using MIRDcalc, version 1.1. Results: At baseline before SARM therapy, the effective dose for [(18)F]FDHT in women was calculated as 0.020 ± 0.0005 mSv/MBq, and the urinary bladder was the organ at risk, with an average absorbed dose of 0.074 ± 0.011 mGy/MBq. Statistically significant decreases in liver SUV or uptake of [(18)F]FDHT were found at the 2 additional time points on SARM therapy (linear mixed model, P \u3c 0.05). Likewise, absorbed dose to the liver also decreased by a small but statistically significant amount at the 2 additional time points (linear mixed model, P \u3c 0.05). Neighboring abdominal organs of the gallbladder wall, stomach, pancreas, and adrenals also showed statistically significant decreases in absorbed dose (linear mixed model, P \u3c 0.05). The urinary bladder wall remained the organ at risk at all time points. Absorbed dose to the urinary bladder wall did not show statistically significant changes from baseline at any of the time points (linear mixed model, P ≥ 0.05). Effective dose also did not show statistically significant changes from baseline (linear mixed model, P ≥ 0.05). Conclusion: Effective dose for [(18)F]FDHT in women before SARM therapy was calculated as 0.020 ± 0.0005 mSv/MBq. The urinary bladder wall was the organ at risk, with an absorbed dose of 0.074 ± 0.011 mGy/MBq
    corecore