2,457 research outputs found

    Translated Chemical Reaction Networks

    Full text link
    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analysed via a variety of techniques, including elementary flux mode analysis, algebraic techniques (e.g. Groebner bases), and deficiency theory. In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a related network called a translated chemical reaction network. These networks share their reaction stoichiometries with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature

    Thermal management in microfluidics using micro-Peltier junctions

    Get PDF
    We report refrigeration and heating of nanoliter fluid volumes with micro-Peltier junctions. The temperature of small liquid reservoirs can be rapidly changed and controlled within a range between -3 degrees C to over 120 degrees C with good long-term stability. These thermal management systems enable the fabrication of complex chip-based chemical and biochemical reaction systems in which the temperature of many processes can be controlled independently

    Inventory of water storage types in the Blue Nile and Volta River Basins

    Get PDF
    Water storage / River basins / Reservoirs / Ponds / Tanks / Groundwater / Soil moisture / Wetlands
    • …
    corecore