222 research outputs found

    Combined observational and modeling based study of the aerosol indirect effect

    Get PDF
    International audienceThe indirect effect of aerosols via liquid clouds is investigated by comparing aerosol and cloud characteristics from the Global Climate Model CAM-Oslo to those observed by the MODIS instrument onboard the TERRA and AQUA satellites http://modis.gsfc.nasa.gov). The comparison is carried out for 15 selected regions ranging from remote and clean to densely populated and polluted. For each region, the regression coefficient and correlation coefficient for the following parameters are calculated: Aerosol Optical Depth vs. Liquid Cloud Optical Thickness, Aerosol Optical Depth vs. Liquid Cloud Droplet Effective Radius and Aerosol Optical Depth vs. Cloud Liquid Water Path. Modeled and observed correlation coefficients and regression coefficients are then compared for a 3-year period starting in January 2001. Additionally, global maps for a number of aerosol and cloud parameters crucial for the understanding of the aerosol indirect effect are compared for the same period of time. Significant differences are found between MODIS and CAM-Oslo both in the regional and global comparison. However, both the model and the observations show a positive correlation between Aerosol Optical Depth and Cloud Optical Depth in practically all regions and for all seasons, in agreement with the current understanding of aerosol-cloud interactions. The correlation between Aerosol Optical Depth and Liquid Cloud Droplet Effective Radius is variable both in the model and the observations. However, the model reports the expected negative correlation more often than the MODIS data. Aerosol Optical Depth is overall positively correlated to Cloud Liquid Water Path both in the model and the observations, with a few regional exceptions

    Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    Get PDF
    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation

    The epidemiology of low- and high-energy distal radius fracture in middle-aged and elderly men and women in Southern Norway

    Get PDF
    Published version of an article in the journal: PLoS One. Also available from the publisher: http://dx.doi.org/10.1371/journal.pone.0043367BACKGROUND: Distal radius is one of the most frequent sites for fractures in the elderly population. Despite this, there is a paucity of epidemiological data for distal radius fracture, in particular, distinguishing between high- and low-energy fractures. Our aim was to study the epidemiology of high- and low-energy distal radius fracture in middle-aged and elderly men and women in Southern Norway, and search for associates with high- or low-energy distal radius fracture in this population. METHODOLOGY/PRINCIPAL FINDINGS: Patients with distal radius fractures aged >/=50 years were identified from all four hospitals in Southern Norway between 2004 and 2005. Age-adjusted and age-specific incidence rates for men and women were calculated, and potential associates with high- and low-energy distal radius fracture were explored both in univariate and multivariate analyses. A total of 799 individuals (118 men and 681 women) aged >/=50 years with low-energy and 84 (48 men and 36 women) with high-energy distal radius fracture were identified. The overall age-adjusted incidence rate per 10,000 person-years was 18.9 for men (low energy, 12.8 vs. high-energy, 6.1) and 75.1 for women (low energy, 71.1 vs. high energy, 4.0). In multivariate model, younger age, male gender, summer season, and living in a rural area were independently associated with an increased risk of high-energy fracture. CONCLUSION: An approximately fourfold higher age-adjusted incidence rate for distal radius fracture was found among women, when compared with men. However, the proportion of patients with high-energy distal radius fracture was approximately fivefold higher in men than in women. Our data suggest that younger age, male gender, summer seasons, and living in rural areas are independent risk factors for increased risk of high-energy distal radius fracture

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed

    Parathyroid hormone induces bone cell motility and loss of mature osteocyte phenotype through L-calcium channel dependent and independent mechanisms

    Get PDF
    Parathyroid Hormone (PTH) can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R), which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1) promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA), exchange proteins activated by cAMP (Epac), protein kinase C (PKC) or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K) agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these results show that PTH induces loss of the mature osteocyte phenotype and promotes the motility of these cells. These two effects are mediated through different mechanisms. The loss of phenotype effect is independent and the cell motility effect is dependent on calcium signaling.Matthew Prideaux, Sarah L. Dallas, Ning Zhao, Erica D. Johnsrud, Patricia A. Veno, Dayong Guo, Yuji Mishina, Stephen E. Harris, Lynda F. Bonewal
    • ā€¦
    corecore