4,899 research outputs found
A crucial sequence for transglutaminase type 2 extracellular trafficking in renal tubular epithelial cells lies in its N-terminal {beta}-sandwich domain
Transglutaminase type 2 (TG2) catalyzes the formation of an -( -glutamyl)-lysine isopeptide bond between adjacent peptides or proteins including those of the extracellular matrix (ECM). Elevated extracellular TG2 leads to accelerated ECM deposition and reduced clearance that underlie tissue scarring and fibrosis. The extracellular trafficking of TG2 is crucial to its role in ECM homeostasis; however, the mechanism by which TG2 escapes the cell is unknown as it has no signal leader peptide and therefore cannot be transported classically. Understanding TG2 transport may highlight novel mechanisms to interfere with the extracellular function of TG2 as isoform-specific TG2 inhibitors remain elusive. Mammalian expression vectors were constructed containing domain deletions of TG2. These were transfected into three kidney tubular epithelial cell lines, and TG2 export was assessed to identify critical domains. Point mutation was then used to highlight specific sequences within the domain required for TG2 export. The removal of -sandwich domain prevented all TG2 export. Mutations of Asp94 and Asp97 within the N-terminal -sandwich domain were identified as crucial for TG2 externalization. These form part of a previously identified fibronectin binding domain (88WTATVVDQQDCTLSLQLTT106). However, siRNA knockdown of fibronectin failed to affect TG2 export. The sequence 88WTATVVDQQDCTLSLQLTT106 within the -sandwich domain of TG2 is critical to its export in tubular epithelial cell lines. The extracellular trafficking of TG2 is independent of fibronectin
Very Early Smoke Detection Apparatus (VESDA), David Packham, John Petersen, Martin Cole: 2017 DiNenno Prize
The 2017 Phillip J. DiNenno Prize was awarded to the innovators of the VESDA smoke detection system. The initialtechnology was invented and patented byDavid PackhamandLen Gibson, who worked withJohn Petersenonprototype development, field trials, and applications engineering.Dr. Martin Colewas responsible for the successfulcommercial development and many further patented technical developments. The VESDA technology and its pre-eminent role in the introduction of aspirated smoke detection (ASD) internationally has led to a major global impacton public safety.The recipients of the 2017 Philip J. DiNenno Prize areDavid Packham,John Petersen,andDr. Martin Cole.Amplecommendation is given to their deceased co-inventor and passionate advocateLen Gibson.Otherimportantcontributions are noted, including technical and other staff from IEI, CSIRO, SSL and Telecom Australia
Roles of N-linked glycosylation and glycan-binding proteins in placentation: trophoblast infiltration, immunomodulation, angiogenesis, and pathophysiology
Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction
Aminophylline and progesterone prevent inflammation-induced preterm parturition in the mouse
Although progesterone (P4) supplementation is the most widely used therapy for the prevention of preterm labor (PTL), reports of its clinical efficacy have been conflicting. We have previously shown that the anti-inflammatory effects of P4 can be enhanced by increasing intracellular cAMP levels in primary human myometrial cells. Here we have examined whether adding aminophylline (Am), a non-specific phosphodiesterase (PDE) inhibitor that increases intracellular cyclic adenosine monophosphate (cAMP) levels, to P4 might improve its efficacy using in vivo and in vitro models of PTL. In a mouse model of lipopolysaccharide (LPS)-induced PTL, we found that the combination of P4 and Am delayed the onset of LPS-induced PTL, while the same dose of P4 and Am alone had no effect. Pup survival was not improved by either agent alone or in combination. Myometrial prolabor and inflammatory cytokine gene expression was reduced, but the reduction was similar in P4 and P4/Am treated mice. There was no effect of the combination of P4 and Am on an ex vivo assessment of myometrial contractility. In human myometrial cells and myometrial tissue explants, we found that the combination had marked anti-inflammatory effects, reducing cytokine and COX-2 mRNA and protein levels to a greater extent than either agent alone. These data suggest that the combination of P4 and Am has a more potent anti-inflammatory effect than either agent alone and may be an effective combination in women at high-risk of PTL
Evaluating aminophylline and progesterone combination treatment to modulate contractility and labor‐related proteins in pregnant human myometrial tissues
Progesterone (P4) and cyclic adenosine monophosphate (cAMP) are regarded as pro-quiescent factors that suppress uterine contractions during pregnancy. We previously used human primary cells in vitro and mice in vivo to demonstrate that simultaneously enhancing myometrial P4 and cAMP levels may reduce inflammation-associated preterm labor. Here, we assessed whether aminophylline (Ami; phosphodiesterase inhibitor) and P4 can reduce myometrial contractility and contraction-associated proteins (CAPs) better together than individually; both agents are clinically used drugs. Myometrial tissues from pregnant non-laboring women were treated ex vivo with Ami acutely (while spontaneous contracting) or throughout 24-h tissue culture (±P4); isometric tension measurements, PKA assays, and Western blotting were used to assess tissue contractility, cAMP action, and inflammation. Acute (1 h) treatment with 250 and 750 μM Ami reduced contractions by 50% and 84%, respectively, which was not associated with a directly proportional increase in whole tissue PKA activity. Sustained myometrial relaxation was observed during 24-h tissue culture with 750 μM Ami, which did not require P4 nor reduce CAPs. COX-2 protein can be reduced by 300 nM P4 but this did not equate to myometrial relaxation. Ami (250 μM) and P4 (100 and 300 nM) co-treatment did not prevent oxytocin-augmented contractions nor reduce CAPs during interleukin-1β stimulation. Overall, Ami and P4 co-treatment did not suppress myometrial contractions more than either agent alone, which may be attributed to low specificity and efficacy of Ami; cAMP and P4 action at in utero neighboring reproductive tissues during pregnancy should also be considered
A questionnaire elicitation of surgeons' belief about learning within a surgical trial
PMID: 23145113 [PubMed - indexed for MEDLINE] PMCID: PMC3493499 Free PMC ArticlePeer reviewedPublisher PD
The UK guidelines for management and surveillance of Tuberous Sclerosis Complex.
Background: The severity of Tuberous Sclerosis Complex (TSC) can vary among affected individuals. Complications of TSC can be life threatening, with significant impact on patients' quality of life. Management may vary dependent on treating physician, local and national policies, and funding. There are no current UK guidelines. We conducted a Delphi consensus process to reach agreed guidance for the management of patients with TSC in the UK. Methods: We performed a literature search and reviewed the 2012/13 international guideline for TSC management. Based on these, a Delphi questionnaire was formed. We invited 86 clinicians and medical researchers to complete an online survey in two rounds. All the people surveyed were based in the UK. Clinicians were identified through the regional TSC clinics, and researchers were identified through publications. In round one, 55 questions were asked. In round two, 18 questions were asked in order to obtain consensus on the outstanding points that had been contentious in round one. The data was analysed by a core committee and subcommittees, which consisted of UK experts in different aspects of TSC. The Tuberous Sclerosis Association was consulted. Results: 51 TSC experts took part in this survey. Two rounds were required to achieve consensus. The responders were neurologists, nephrologists, psychiatrist, psychologists, oncologists, general paediatricians, dermatologist, urologists, radiologists, clinical geneticists, neurosurgeons, respiratory and neurodisability clinicians. Conclusions: These new UK guidelines for the management and surveillance of TSC patients provide consensus guidance for delivery of best clinical care to individuals with TSC in the UK
A One Health Framework for the Evaluation of Rabies Control Programmes: A Case Study from Colombo City, Sri Lanka
<div><p>Background</p><p>One Health addresses complex challenges to promote the health of all species and the environment by integrating relevant sciences at systems level. Its application to zoonotic diseases is recommended, but few coherent frameworks exist that combine approaches from multiple disciplines. Rabies requires an interdisciplinary approach for effective and efficient management.</p><p>Methodology/Principal Findings</p><p>A framework is proposed to assess the value of rabies interventions holistically. The economic assessment compares additional monetary and non-monetary costs and benefits of an intervention taking into account epidemiological, animal welfare, societal impact and cost data. It is complemented by an ethical assessment. The framework is applied to Colombo City, Sri Lanka, where modified dog rabies intervention measures were implemented in 2007. The two options included for analysis were the control measures in place until 2006 (“baseline scenario”) and the new comprehensive intervention measures (“intervention”) for a four-year duration. Differences in control cost; monetary human health costs after exposure; Disability-Adjusted Life Years (DALYs) lost due to human rabies deaths and the psychological burden following a bite; negative impact on animal welfare; epidemiological indicators; social acceptance of dogs; and ethical considerations were estimated using a mixed method approach including primary and secondary data. Over the four years analysed, the intervention cost US $1.03 million more than the baseline scenario in 2011 prices (adjusted for inflation) and caused a reduction in dog rabies cases; 738 DALYs averted; an increase in acceptability among non-dog owners; a perception of positive changes in society including a decrease in the number of roaming dogs; and a net reduction in the impact on animal welfare from intermediate-high to low-intermediate.</p><p>Conclusions</p><p>The findings illustrate the multiple outcomes relevant to stakeholders and allow greater understanding of the value of the implemented rabies control measures, thereby providing a solid foundation for informed decision-making and sustainable control.</p></div
Distinct Binding and Immunogenic Properties of the Gonococcal Homologue of Meningococcal Factor H Binding Protein
Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups
- …