9,741 research outputs found

    A Quiet Helicopter for Air Taxi Operations

    Get PDF
    NASA is exploring rotorcraft designs for VTOL air taxi operations, also known as urban air mobility (UAM) or on-demand mobility (ODM) applications. Several concept vehicles have been developed, intended to focus and guide NASA research activities in support of aircraft development for this emerging market. This paper examines a single main-rotor helicopter designed specifically for low-noise air taxi operations. Based on demonstrated technology, the aircraft uses a turboshaft engine with a sound-absorbing installation, and the NOTAR anti-torque system to eliminate tail-rotor noise, consequently the noise and annoyance of the aircraft are dominated by the main rotor. Several design parameters are explored to reduce the noise, including rotor tip speed, blade geometry, and higher-harmonic control. Commensurate with the level of design detail, the noise is calculated for compact loading and thickness sources on the rotating blades. The metric is the reduction of the noise for the helicopter certification conditions (takeoff, flyover, and approach), relative a baseline aircraft with typical (high) tip speed, conventional blade planform, and no higher-harmonic control

    Airloads, wakes, and aeroelasticity

    Get PDF
    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented

    Arkansas Animal Science Department Report 2002

    Get PDF
    The faculty and staff of the Animal Science Program are pleased to present the sixth edition of the Arkansas Animal Science Report. As with virtually all programs in the country, budget constraints presented serious challenges to teaching, research, and extension programming. However, the faculty and staff responded with innovation, good management, and hard work to maintain a productive program designed to benefit the students of the University and the citizens of the state. We are committed to remaining faithful to our Land-Grant mission. A sincere thank you is owed to Dr. Zelpha Johnson and Dr. Wayne Kellogg for editing this publication. We are proud that Meat and Poultry magazine ranked the animal and poultry programs at the University of Arkansas among the top four in the United States for 2003. This is a tribute to the dedicated and talented faculty in the Departments of Animal Science, Poultry Science, and Food Science and to their high level of cooperation

    Aeroelastic loads and stability investigation of a full-scale hingeless rotor

    Get PDF
    An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio

    Vibration analysis of the SA349/2 helicopter

    Get PDF
    Helicopter airframe vibration is examined using calculations and measurements for the SA349/2 research helicopter. The hub loads, which transmit excitations to the fuselage, are predicted using a comprehensive rotorcraft analysis and correlated with measuring hub loads. The predicted and measured hub loads are then coupled with finite element models representing the SA349/2 fuselage. The resulting vertical acceleration at the pilot seat is examined. Adjustments are made to the airframe structural models to examine the sensitivity of predicted vertical acceleration to the model. Changes of a few percent to the damping and frequency of specific models lead to large reductions in predicted vibration, and to major improvements in the correlations with measured pilot-seat vertical acceleration
    corecore