5,000 research outputs found
Spectral Properties of H-Reflex Recordings After an Acute Bout of Whole-Body Vibration
Although research supports the use of whole-body vibration (WBV) to improve neuromuscular performance, the mechanisms for these improvements remain unclear. The purpose of this study was to identify the effect ofWBV on the spectral properties of electrically evoked H-reflex recordings in the soleus (SOL) muscle. The H-reflex recordings were measured in the SOL muscle of 20 participants before and after a bout of WBV. The H-reflexes were evoked every 15 seconds for 150 seconds after WBV. A wavelet procedure was used to extract spectral data, which were then quantified with a principle components analysis. Resultant principle component scores were used for statistical analysis. The analysis extracted 1 principle component associated with the intensity of the myoelectric spectra and 1 principle component associated with the frequency. The scores of the principle component that were related to the myoelectric intensity were smaller at 30 and 60 milliseconds after WBV than before WBV. The WBV transiently decreased the intensity of myoelectric spectra during electrically evoked contractions, but it did not influence the frequency of the spectra. The decrease in intensity likely indicates a smaller electrically evoked muscle twitch response, whereas the lack of change in frequency would indicate a similar recruitment pattern of motor units before and after WBV
Spinal Motor Control Differences between the Sexes
Activity-related knee joint dysfunction is more prevalent in females than males. One explanation for the discrepancy is differences in movement patterns between the sexes. However, the underlying mechanisms responsible for these differences remain unidentified. This study tested spinal motor control mechanisms influencing motor neuron pool output and subsequent muscle activation in 17 males and 17 females. The following variables were assessed at the soleus: the gain of the unconditioned H-reflex, gain of both intrinsic pre-synaptic inhibition (IPI) and extrinsic presynaptic inhibition (EPI), the level of recurrent inhibition (RI), the level of supraspinal drive determined by the ratio of the Vmax:Mmax (V-wave), electromechanical delay (EMD) and the rate of force development (RFD). The Wilks Lambda multivariate test of overall differences among groups was significant (p = 0.031). Univariate betweensubjects tests revealed males had greater RI (p = 0.042). However, the sexes did not differ on any of the other variables tested. In conclusion, the sexes differ on modulation of spinal motor control. Specifically, RI, a post-synaptic regulator of force output, was greater in males
Optimized Photolithographic Fabrication Process for Carbon Nanotube Devices
We have developed a photolithographic process for the fabrication of large arrays of single walled carbon nanotube transistors with high quality electronic properties that rival those of transistors fabricated by electron beam lithography.Abuffer layer is used to prevent direct contact between the nanotube and the novolac-based photoresist, and a cleaning bake at 300C effectively removes residues that bind to the nanotube sidewall during processing. In situ electrical measurement of a nanotube transistor during a temperature ramp reveals sharp decreases in the ON-state resistance that we associate with the vaporization of components of the photoresist. Data from nearly 2000 measured nanotube transistors show an average ON-state resistance of 250 ± 100 kΩ. This new process represents significant progress towards the goal of highyield production of large arrays of nanotube transistors for applications including chemical sensors and transducers, as well as integrated circuit components
Recommended from our members
Spinal control differences between the sexes
Despite years of research, females continue to have a higher incidence of non-contact ACL injuries. One of the major findings of this research is that males and females perform certain tasks, such as, cutting, landing, and single-leg squatting, differently. In particular, females tend to move the knee into a more valgus position; a motion putting the ACL at risk for injury. Yet the underlying spinal control mechanisms modulating this motion are unknown. Additionally, the mechanisms regulating the ability to rapidly initiate and produce maximal torque are also unknown. Therefore, the purpose was to: 1) determine if the sexes modulate spinal control differently, 2) examine the contributions of spinal control mechanisms to valgus knee motion, and 3) identify contributions of spinal control to the ability to rapidly produce force. The spinal control variables were the first derivative of the Hoffmann (H)-reflex, the first derivative of extrinsic pre-synaptic inhibition (EPI), the first derivative of intrinsic pre-synaptic inhibition (IPI), recurrent inhibition (RI), and V-waves. To assess the neuromuscular system’s ability to rapidly activate, rate of torque development (RTD) and electromechanical delay (EMD) were measured. Lastly, valgus motion was determined by the frontal plane projection angle (FPPA). The results reveal males and females do modulate spinal control differently; specifically males had an increased RTD, which is the slope of the torque-time curve, and increased RI, which is a post-synaptic regulator of torque output. However, the spinal control mechanisms did not significantly contribute to FPPA at the knee. EMD which is the time lag from muscle activity to torque production was significantly predicted by the spinal control mechanisms. Specifically, EPI, a modulator of afferent inflow from peripheral and descending sources, IPI, a regulator of Ia afferent inflow, and sex significantly contributed to EMD. Lastly, the spinal control mechanisms significantly contributed to RTD. Specifically, IPI, sex, and V-waves, a measure of supraspinal drive, all significantly contributed to RTD
Nanoenabled microelectromechanical sensor for volatile organic chemical detection
A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also been shown to prove the large dynamic range of sensitivity attainable with the sensor. The adsorption process in the ss-DNA decorated SWNTs does not occur in the bulk of the material, but solely involves the surface, which permits to achieve 50% recovery in less than 29 s
Amenability of algebras of approximable operators
We give a necessary and sufficient condition for amenability of the Banach
algebra of approximable operators on a Banach space. We further investigate the
relationship between amenability of this algebra and factorization of
operators, strengthening known results and developing new techniques to
determine whether or not a given Banach space carries an amenable algebra of
approximable operators. Using these techniques, we are able to show, among
other things, the non-amenability of the algebra of approximable operators on
Tsirelson's space.Comment: 20 pages, to appear in Israel Journal of Mathematic
DNA-Decorated Carbon Nanotubes as Sensitive Layer for AlN Contour-Mode Resonant-MEMS Gravimetric Sensor
In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The introduction of this bio-coating layer addresses the major drawbacks of recovery time (50% recovery in less than 29 seconds has been achieved) and lack of selectivity associated with gas sensor based on polymers and pristine carbon nanotube functionalization layers
Gravimetric chemical sensor based on the direct integration of SWNTS on ALN Contour-Mode MEMS resonators
This paper reports on the first demonstration of a gravimetric chemical sensor based on direct integration of Single Wall Carbon Nanotubes (SWNTs) grown by Chemical Vapor Deposition (CVD) on AlN Contour-Mode MicroElectroMechanical (MEMS) resonators. In this first prototype the ability of SWNTs to readily adsorb volatile organic chemicals has been combined with the capability of AlN Contour-Mode MEMS resonator to provide for different levels of sensitivity due to separate frequencies of operation on the same die. Two devices with resonance frequencies of 287 MHz and 442 MHz have been exposed to different concentrations of DMMP in the range from 80 to 800 ppm. Values of mass sensitivity equal to 1.8 KHz/pg and 2.65 KHz/pg respectively have been measured
Reduced expression of frataxin extends the lifespan of C. elegans, N. Ventura et al.
Defects in the expression of the mitochondrial protein frataxin cause Friedreich's ataxia, an hereditary neurodegenerative syndrome characterized by progressive ataxia and associated with reduced life expectancy in humans. Homozygous inactivation of the frataxin gene results in embryonic lethality in mice, suggesting that frataxin is required for organismic survival. Intriguingly, the inactivation of many mitochondrial genes in the nematode Caenorhabditis elegans by RNAi extends lifespan. We therefore investigated whether inactivation of frataxin by RNAi-mediated suppression of the frataxin homolog gene (frh-1) would also prolong lifespan in the nematode. Frataxin-deficient animals have a small body size, reduced fertility and altered responses to oxidative stress. Importantly, frataxin suppression by RNAi significantly extends lifespan in C. elegans
Recommended from our members
NRP2 as an Emerging Angiogenic Player; Promoting Endothelial Cell Adhesion and Migration by Regulating Recycling of α5 Integrin.
Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on β3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN
- …