12,701 research outputs found

    Cassini detection of Enceladus' cold water-group plume ionosphere

    Get PDF
    This study reports direct detection by the Cassini plasma spectrometer of freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier water dimer ions (HxO(2))(+) very close to Enceladus where the plasma begins to emerge from the plume. The data were obtained during two close ( 52 and 25 km) flybys of Enceladus in 2008 and are similar to ion data in cometary comas. The ions are observed in detectors looking in the Cassini ram direction exhibiting energies consistent with the Cassini speed, indicative of a nearly stagnant plasma flow in the plume. North of Enceladus the plasma slowing commences about 4 to 6 Enceladus radii away, while south of Enceladus signatures of the plasma interaction with the plume are detected 22 Enceladus radii away. Citation: Tokar, R. L., R. E. Johnson, M. F. Thomsen, R. J. Wilson, D. T. Young, F. J. Crary, A. J. Coates, G. H. Jones, and C. S. Paty ( 2009), Cassini detection of Enceladus' cold water-group plume ionosphere, Geophys. Res. Lett., 36, L13203, doi:10.1029/2009GL038923

    Plasma electrons above Saturn's main rings: CAPS observations

    Get PDF
    We present observations of thermal ( similar to 0.6 - 100eV) electrons observed near Saturn's main rings during Cassini's Saturn Orbit Insertion (SOI) on 1 July 2004. We find that the intensity of electrons is broadly anticorrelated with the ring optical depth at the magnetic footprint of the field line joining the spacecraft to the rings. We see enhancements corresponding to the Cassini division and Encke gap. We suggest that some of the electrons are generated by photoemission from ring particle surfaces on the illuminated side of the rings, the far side from the spacecraft. Structure in the energy spectrum over the Cassini division and A-ring may be related to photoelectron emission followed by acceleration, or, more likely, due to photoelectron production in the ring atmosphere or ionosphere

    Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings

    Get PDF
    The ion mass spectrometer on Cassini detected enhanced ion flux near Saturn's main rings that is consistent with the presence of atomic and molecular oxygen ions in the thermal plasma. The ring "atmosphere'' and "ionosphere'' are likely produced by UV photosputtering of the icy rings and subsequent photoionization of O-2. The identification of the O+ and O-2(+) ions is made using time-of-flight analysis and densities and temperatures are derived from the ion counting data. The ion temperatures over the main rings are a minimum near synchronous orbit and increase with radial distance from Saturn as expected from ion pick up in Saturn's magnetic field. The O-2(+) temperatures provide an estimate of the neutral O-2 temperature over the main rings. The ion mass spectrometer also detected significant O-2(+) outside of the main rings, near the F ring. It is concluded that between the F and G rings, the heavy ion population most likely consists of an admixture of O-2(+) and water group ions O+, OH+, and H2O+

    Undergraduate medical education: Thoughts on future challenges

    Get PDF
    BACKGROUND: There is considerable uncertainty about the future of undergraduate medical education in the face of several important challenges. This paper highlights many of the complexities of the challenges facing medical school leadership today. DISCUSSION: A major challenge facing medical education in the United States is the erosion of the clinical environment, the loss of clinical revenues and all its attendant consequences, including pressures for increased faculty productivity in an environment that is increasingly managed. These pressures have squeezed the time for teaching out of the system. Another challenge is how to incorporate all the new and emergent domains of knowledge into the existing curriculum. There is also a need to incorporate technological advancements into the delivery of teaching. SUMMARY: Undergraduate medical education in the United States must respond to a multitude of challenges if it is to remain vibrant in the 21(st) century

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Hyperfine Structure Constants for Eu Isotopes: Is The Empirical Formula of HFS Anomaly Universal ?

    Get PDF
    We calculate the hyperfine structure constant for the Eu isotopes with shell model wave functions. The calculated results are compared with those predicted by the Moskowitz-Lombardi (M-L) empirical formula. It turns out that the two approaches give the very different behaviors of the hfs constants in the isotope dependence. This should be easily measured by experiment, which may lead to the universality check of the M-L formula.Comment: 18 pages, Latex, two figure

    Systematics within Gyps vultures: a clade at risk

    Get PDF
    BACKGROUND: Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis. RESULTS: Phylogenetic results using mitochondrial cytB, ND2 and control region sequence data indicate a recent and rapid diversification within the genus Gyps. All recognized species formed monophyletic groups with high statistical support, with the exception of the Eurasian Vulture, for which specimens identified as subspecies G. fulvus fulvescens appear closely related to the Himalayan Vulture (G. himalayensis). In all analyses, the earliest divergence separated the Oriental White-backed Vulture from other Gyps taxa, with the next diverging taxon being either the African White-backed Vulture (G. africanus), or the Himalayan Vulture. All analyses supported a sister relationship between the Eurasian Vulture (G. f. fulvus), and Rüppell's Vulture (G. rueppellii), with this clade being sister to another consisting of the two taxa of "Long-billed" Vulture (G. indicus indicus and G. i. tenuirostris), and the Cape Vulture (G. coprotheres). These molecular phylogenies strongly support the treatment of indicus and tenuirostris as separate species, as does morphological data showing that these two taxa of similar overall size differ in proportions, especially in rostral, alar, and pedal characters. In addition, grouping of bengalensis and africanus together in the genus Pseudogyps, as historically proposed, is not upheld based on mitochondrial data. CONCLUSION: Both molecular and morphological data provide strong support for considering the "Long-billed" Vulture to be comprised of two species (G. indicus and G. tenuirostris), and further analysis is warranted to determine the taxonomic distinctiveness of G. f. fulvescens. Our phylogenetic analyses and conservative estimates suggest the diversification of Gyps taxa to be within the past 6 million years. Diclofenac susceptibility has been previously demonstrated for four Gyps species (G. indicus, G. fulvus, G. africanus, G. bengalensis), and the phylogenetic position of these species each forming a sister relationship with at least one of the remaining species, support concern that other Gyps taxa may be susceptible as well. Determining genetic and evolutionary distinctiveness for Gyps lineages is increasingly important as a breeding program is being established to prevent extinction

    Genetic Deletion of a Single Immunodominant T-cell Response Confers Susceptibility to Virus-induced Demyelination

    Get PDF
    An important question in neuropathology involves determining the antigens that are targeted during demyelinating disease. Viral infection of the central nervous system (CNS) leads to T-cell responses that can be protective as well as pathogenic. In the Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known that the immune response to the viral capsid protein 2 (VP2) is critical for disease pathogenesis. This study shows that expressing the whole viral capsid VP2 or the minimal CD8-specific peptide VP2(121-130) as “self” leads to a loss of VP2-specific immune responses. Loss of responsiveness is caused by T cell-specific tolerance, as VP2-specific antibodies are generated in response to infection. More importantly, these mice lose the CD8 T-cell response to the immunodominant peptide VP2(121-130), which is critical for the development of demyelinating disease. The transgenic mice fail to clear the infection and develop chronic demyelinating disease in the spinal cord white matter. These findings demonstrate that T-cell responses can be removed by transgenic expression and that lack of responsiveness alters viral clearance and CNS pathology. This model will be important for understanding the mechanisms involved in antigen-specific T-cell deletion and the contribution of this response to CNS pathology
    corecore